DOCOMENT BESOME

Author titie

INSTITOTICN
SPONS AGENCY

POB_DATE NOTE

EDRS PRICE DESC EIPTORS

Quantitative Methods f̄̄r pubitc Managemeñ fackage XVi. Introductory Manułi: Module í fevised; Moduie III, Revised: Module iv. Revised.
Carnegie-Mellon oniv., pittsburgh, pa. scinool ō Orban and Pubilc Affairs.
Department of Housing and Urban Development. Wāhington, D.C. Office of Policy Development and Research.: National Training and Deveiopment Service for Stāte and Local Government, wāshington, D.C. [77]
1, 157p.: Figurēs mā̀ be illegible due to smáll, broken print. For related documents see ub 020 926-937 and 0 E $021002=009$.

MF09/PC47 P1us Postage.
*Computer oriented Programs: *Data Anaiysis: Data Processing; Instructional Materiais: Lccal Gover ment: Fostsecondary Education: *public Administration educaticn : *Statistical Analysis: orban areas

ABSTRACT
 National Training and Development service urban Management curricuium Development program: The four modules included in the package contain instructicnā materials covering a bread range of statistical and dātā āalytic procedures chosen on the basis of their probable utility to public mānagers and administrators. The materials emphāsize grafhics, rcbust procedures, model development, and the evaluation and critique of anaiyses, Each module contains instructor's materiāis, lecture outlines and supplementāy mãerials; students' mátériās, reāding āssignments, exercises, ānd exāms. a

 sequence for one course or as short ccurses on specific topics. (MR)

[^0]
Acknowledgements

Assistance in the preparation of this package was provided by Blaine Aikin, Larry Albert, Joseph Chmill, Steve Clark, Marjorie Farineilís, Janíce Greene, Gretchen Hemingsen, Paui W. Holland, J. Míchāel Hopkins, Gaea Leinhardt, Richard Sandusky, Christine Visminas, Diane Warriner, and Taminar Zeheb.

Table of Contents

Need	EVI-0.1
General Overview	EVI.0.2
Goals	XVE.0.4
Module and Unit Content	XVI.0.5
Suggested Sequencing	XVI.0.5
Module Table of Contents	XVI.0.8
Package Development	XVI. 0.14
Main References for QMPM	XVI.0.16

Introductory Manual

Meed

Policy development and administrative decision making in the public sector often require the collection and analysis of quantitative dáta and. the evaluetion of analytic results: Consequently, potential managers and administrators require a solid foundation in statistical reassoning and data analytic procedures if they are to become effective practitioners. Most curricula in public management or administration have long recognized this need and have inciuded an clementary statistics course in thēir re quired sequence: However, the ad hoc nature of most policy or adminis̄ trative analyses; the low quality of most data sourcēs, and the need of
 that the usual introduction to statistics may not be optimal. In addition, since students ōf policy management rareiy complete more than a two semester introductory sequence in quantitative methōs, the course must be comprem hensive; covering advanced as well as introductory material. Unfortunately, an addíional probiem is that most introductory texts in statistics; and therefore most introductory courses, are oríntē towards the natural or biologicai sciences, covering topics and developing examples of relevance chieffy $\overline{\text { cou }}$ these disciplines.

Quantitative Methods for Pubiic Management (QMPM) represents a break with the traditionai approach. The course contains instructionai material covering a broad range of stāistical and data anaiytic procedures chosen on the basis of their probabie utility to pubiic managers añ administrators. The material emphasizes graphics, robust procedures; modé development, and the evaluation and critique of analyses. Besides a specialy selected set of topics, the course contafns data derived from "real worid" polícy
relevant situations. All examples, exercises; and exam problems derive from actual empirical situations of relevance to public policy managers añ àdinīistrators. By providing reievant contexts for the development añ exercise óf abstract méthods, the course assures a deepē and more iasting éducational experience for the student and enhances the student's likelihood of successfuily mastering these methods. Quantitative evaluations of the educational effectiveness of QMPM have shown that it possesses definite advantages over traditional approaches (Eeinhardt and Wasserman, forthcoming; Leinhardt; Leinhardt and Wasserman; 1977):

General Overview

The package consists of thret elements: (1) a set of detailed lecture outines and supplemental material for an instructor; (2) a set of reading assignments; exercises; and exams for students; and (3) a computer system for performing data analysis on numerical data files:

Instructors; assumed tō be experienced at teaching statistics or quantitative methods; use the lecture outines as guides in the preparation of each 90 minute iecture. The outifnes are extensively detailed and organized in a consfstent manner. Learning goals and presentation activities are clearly defined and presentation aids such as overhead projector transparency masters are keyed directly to the léture outline. Since many topics covered in QMPM do not appear in traditional stâtistics textbooks, sugges téd readings are specified to provide instructors with a guide to backeground material:

Students are expect to have a minimum mathematical preparation of cóliege algebra. Units containing more advanced mathematical material (such as calculus) are preceded by prerequisité inventoriēs intended to

Abstract

detect weaknes̄̄ē in stūent preparation and to servè às à remedial resource. Supplementary material for reãing by sudents provides coverage of items whose mastery is prérequisite to mastēry of unit material. Reading assigna ments; exercises, and examinations are kēyed to the lecture sequence and are designed to provide students with textual descriptions of methods, rēē̄̄nt examplē of empirical applications, and opportunities to exercise newly leāned skills on problems whose substance is intéllectually interá: esting and of \bar{a} contemporary nature. Worked solutions to problem sets are provided $s o$ that feedback to the \mathbf{s} tudent can be rapid and, therefore, educationally effective.

The reading assignments for students refer to both textbooks in methods and academic journals. Several texts are used since; at the time the course was designed, no single text existed which covered all the topics represented in QMPM. Those texts which are heavily read should be purchased while others can be consulted at the library. Journai articies serve the purpose of exposing students to studies of the type they will likely bave to read and digest in performing future professional activities. By and large, the séected articies are reprinted in certain editea volumes and purchase of these is suggested. Other material can be found in university and college librariēs.

A computer software system is available to provide students with the opportunity to perform numerous data analyses. One of the most limiting featixes of traditional approaches to the teaching of data analysis is their reliance on 8 tudent performance of the arithmetic necessary for the completion of an exercise. While hand calculators have facilitated these operations; many of the procedures covered in QMPM require elaborate arithmetical operations which are arduous to perform éven on advanced
hand calculators. Additionalyy, effective leāning of data analytic practices requires the stūent to be rēady to try severā approaches to the same problem or to repeatedly reanalyze parts of a problem. Such experience provides the student with illustrations of the sensitivity of analytic results to the methods applied with practice at the application of $\bar{s} i m i l a \bar{a}$ techniques in widely differing circumstances.

Although frequent performance of analytic activities contributes to learning they can burden the student with an inordinate amount of reptī tious and boring hand work. The computer routine (CMU-DAP), available for use with the OMPM package, obviates this activity by having the computer perform the arithmetical operations. The system is designed so that operations appear natural, i.e., no prior programming experience is necessary The routines are "called" in a language that is easily understood and em= ployed by novices. While the machine generates graphics and performs computations, the student is free to concentrate on alternative analytic strategies or the evaluation of analytic results. Note that while the computing system enhances the learning experience, it is not an essential feature. In particular, instructional material does not depend on its availability. Other comercialiy available systems such as SPSS, IBM STATPAK, etc., contain routines for performing many of the procedures covered in OMPM and māy be substituted for CMU-DAP. Also, new and planned texts (e.g., McNeil, 1977, and Hoaglin and Velleman; in preparation) provide code for exploratory techniques.

Goals

QMPM is designed to facilitate the education of pubilc managers and administrators in contemorary data anaiysis; to provide them with skills

Abstract

for understanding and criticizing analyses performed by others, and to provide them with $\overline{8} k i l \bar{s}$ for presenting and interpreting techalcal material to non-technical audiences. The pedagogic structure, topic organization, and instructional material are designed with the objective of providing students with a deep understanding of data analytic methodz and assuring that a figh proportion of students will acquire mastery of data analytic 8kills.

Module and Unit Content
MPM's curicular material is divided into four independent modules Fich are further disaggregated into content units consisting of varying unureis of 90 minute lectures.

Suggested Sequencing

A year's length course can be organized by either foliowing the specified sequence of modules and units ō modifying this sequence to fic the purposes of the instructor: The designed sequence is based on a hierarchical development of skilis for handíng increasingiy more
 precede muitipie batches, and in Module í regression with one carrier precedes regression with multipie carriers: Note, though, that QMPM's topíc organization ís non-traditionai. The most dramatic deviation frou usuai sequencing occurs in the presentation of regression as a modé fitting procedure béfore the presentation of probability notions. The assumptíon hēre ís that probā̀ility and inference are not essential to the process of constructing modès. Rathē, they speak to the issue of sélecting best fitting models or estimating parameter values in sampifng sítuations. The logic behind this sequencing is discussed

In Leinhardt and Lasserman (1977). An alternative and more:traditional approach would place Module III; particularly units 5 and 7, Gefore Module II. Reğ̀ession could then be covered either directly after Module III or aftex Module IV. Unit 8 can occur anytime átier Module III But Unit 9 should not precēē Module III. A diagram of module and unit dependence appears below.

Modules are circled and indicated by Roman numerals; Āā̄īc numerais refer to units. Solid ines indicate design dependence; dashed itnes indicate alternatives to the sequence implicit.in the unit numbers.

Each module and each unit.is a complete instructional package and can; therefore; be taught independently of other QMM components. However, each does possess a set of prerequisites which are often covered in preceding components. if mastery of these prerequisites is assured, prior components need not be taught.

Sincē the package is̄ modularized; components can $\overline{\mathrm{b}} \mathrm{e}$ usē̃ to co ceate short courses focusing on speelfye topics or as part of in-service training programs that offer buselfetion of topics: For example, a short course on contemporary expitpratory data anaiysis could be composed of units $1 ; 2,3$; and 8. A \&fort course on anaiysis óf contingency tāblē could be based on units $5 ; 6 ; \overline{6}$, and 9 . A Short course on modern data analytic grāphics could bé dēveloped us̄ing units 1 and 2: Ā s̄̄̄̄rt course ir regression could be based on units 3, 4, 5, and 6. A flow chart of these alternatives appears below. Other courses can be conceived and interconnected with these suggested sequences.

Module Table of Contents

z, Unit 1 (I)	XVI.I:167
Quiz Solutions, Unit 1 (i)	EVI- -170
Lecture 2-0 Outline (i)	
(1)	XVI.I.172
Lecture 2-0 Transparency Presentation Guide (I)	$\overline{\text { XVI }}$ ¢ $\overline{1} \overline{177}$
Lecture 2-0 Transparencies (S)	XVI.I. 178
Lecture 2-1 Outline (I)	XVI.I. 186
Lecture 2-i Transparency Presentation Guide (I)	XVI.I.192
Lecture 2-1 Transparencies (S)	XVI-I:193
Lecture 2-2 Outíne (I)	XVI.I.200
Lecture e 2-2 Transparency Prēentation Guide (I)	XVI.I.207
Lecture 2-2 Transparençes (S)	XVI.I. 208
Homework; Unit 2 (S)	XVI.I.221
Homework Solutions, Unit 2 (i)	XVI.I. 225
Quiz: Unit 2 (I)	XVI:I.236
Quiz Solutions; Unit 2 (I)	XVI.I. 239
Some Principles of Graphics for Tables and Charts (S)	XVİ.İ. 242
Introduction to Module is (i)	XVE.Ė-
Readtug AsEignments, Unit 3 (S)	XVI.II. 4
Prerequisite Inventory, Unit 3 (S)	XVI.II. 5
Homework, Prerequisite Inventory, Unit 3 (S)	XVI.II. 30
Homework Solutions, Prerequisite Inventory; Unit 3 (I) Eecture 3-0 Outline (I)	XVI.İ. ${ }^{\text {a }}$ (XVI.II. $\mathbf{3 6}$
Lecture 3-0 Transparency Presentition Guide (I)	XVI.II.42
Lecture 3-0 Transparencles (S)	IVI. İ:43
Lecture 3-1 Outline (I)	XVI.II. 53
Lecture 3-1 Transpurency Presentàtion Guide (I)	$\overline{X V I} . \overline{I ̇} .5 \overline{9}$

Lecture 3-1 Transparenciess (S)	XVI.II. 60
Lecture 3-2 Ourline (1)	EVI.II 74
Lecture 3-2 Transparency Presentātion Guide (I)	1vi.İ.80
Lecture 3-2 Transparencies (s)	EVI.II. 81
Lecturè 3-3 Outiñè (i)	XVI.II. 93
Lecture 3-3 Transparency Presentation Guide (I)	XVI.II. 100
Lecture 3-3 Transparencles (S)	XVİİİ102
Lecture 3-4 Outline (I)	XVI.İ.119
Lecture 3-4 Transparency Presentation Guide (i)	XVİİİ125
Lecture 3-4 Transparencies	XVI.İ-126
Homework, Unit 3 (S)	EVI.II.140
Homework Solutions, Unit 3 (I)	XVI.II 151
Ouiz, Unit 3 (I)	XVI.II. 177
Quiz Solutions, Unit 3 (I)	XVI.II 183.
Reading Assiggments; Unit 4 ($\mathrm{S}^{\text {c }}$	
Prerequisite Inventory, unit 4 (S)	XVİİİ187
Homework; Frerequisite Inventory, Unit 4 (S)	XVI.İI. 212
Homework Solutions; Prerequisite Inventory, Unít 4 (i)	
Lecture 4=0 Outline (I	-ivioili-215
Lecture $4-0$ Transparency Prēentation Cuide (I)	XVI.II. 222
Lecture 4-0 Transparencies (S)	XVI.II. 223
Lécture 4 -i outinue (i)	XVİ.İİ231
Lecture 4-2 Outinne (i)	
Lêcturēe 4-3 Outliñe (I)	$\overline{X V I} . \overline{I ̇} .24 \overline{9}$
Lecturè 4-3 Transparency Presentation Guide (i)	XVİİ-262
Lecture 4=3 Transparencies (S)	XVİ-İ.263
Lecture 4-4 Outilne (I) 14	XVİİİ279

Lecture 4-4 Transparency Presentation Guide (I)	XVI.II. 285
Lecture 4-4 Transparencies (S)	XVI.İ. 286
Lecture 4-5 Outline (I)	XVI.II.300
Lecture 4-5 Transparency Presentation Guide (I)	XVI.II.305
Lecture 4-5 Transparencies (S)	XVI.II.306
Lecture 4-6 outline (I)	XVI.II. 313
Lecture 4-7 outine (i)	XVİİİ319
Homework; Unit 4 (S)	XVI.II. 326
Homework Solutions; Unit 4 (I)	XVI.11.330
Quiz, Unit 4 (I)	XVI.1I.368
Quiz Solutions, Unit 4 (I)	XVI.II.370
Handout: Covariances and Independence in the Bivariate Multiple Regression Model (S)	XVI.II. 392
Handout: What to Look for in Reading Technicāl Reports (S)	XVI.İ. 396
Handout: Some Principles of Graphics for Scatterplotso (S)	XVI.II. 398
Introduction to Module III (I)	EVI.III.1
Reading Assigmentss, Unit 5 (S)	XVI.III. 4
	$\overline{\text { EVI IIII. }} \overline{5}$
Homework; Prerequisite Inventory, Module İI (s)	EVI.İİ.11
Homework Solutions, Prerequisite Inventory, Module Inif (I)	Evi.III. 12
Lécture 5-0 Outinne (i)	Evi.III. 13
Lécture 5-0 Transparency Presentation Guide (I)	EvI.III. 21
Lecture 5-0 rransparencies	EVI.III. 22
Lecture $\overline{5} \overline{1}$ Outline (I	XVI.III. 27
	XVI.İİ. ${ }^{2}$
Lecture 5-i Transparencies (S)	CVI.III. 33
Lecture 5-2 Outiné ($(\underline{1}$)	EVİİİ.46
Lecture 5-2 transparency Presentation eulde (i)	xิvi.İx.53

Lecture 5-2 Transparenciee (S)	XVI.İİ. 54
Lecture 5-3 Outline (I)	XVI.III.64
Lecture 5-3 Transparency presentation cuide (I)	ExI.İİ70
Lectüree 5-3 trañparencien (S)	XVI.IIII.71
Howeworle, Dinit 5 (S)	2V1.III. 81
Eamework Solutions, ט̄it 5 (I)	IVI.III.88
Quiz; Dinit s (I)	IVI.III. 93
Quiz Solutions; Unit 5 (I)	2VI.III. 97
qeading desigmente; Unit 6 (S)	$\overline{\text { XVİIIİ }} \mathbf{9}$ 9
Vecture 6-0 Outline (I)	2vi-IIİ100
Lecture 6-0 Transparency Presentation Ciide (I)	2vi.İİ.105
Lecture 6-0 Traniparencies (S)	EVI.III.106
Lecture 6-1 Outilne (I)	※iv. 1 III.111
Lecture 6-2 Outiline (i)	TVI.III. 117
Lecture 6-2 Transparency Presentation Cutde (1)	EVI.III.123
Lecture 6-2 Trusparencies (S)	XVI.III.124
Homework, Dait 6 (S)	EVI.III. 126
Banework solutions, प̄nit 6 (I)	IVI.EIIT. 129
Quiz; Unit 6 (I)	XVI.III. 134
Quiżsolutions; Dnit 6 (I)	EVI.III. 139
Reading Aseigrments; Onit 7 (S)	EVI.III. 141
Lecture 7-0 Outline (I)	EVI.III.143
Lecture 7-1 Outline (I)	2VI.III-148
Lecture 7-2 Outline (I)	2vi.III.153
-amework, Dnit 7 (S)	EVI.EII. 160
(There are no bolutions to unit 7 homework, Bince is no eingie "correct" maver.)	

Cile, Unit 7 (I)	EVI.III. 161
Quiz Solutions, Dinit 7 (I)	2VI.III.164
Introduction to Module IV (I)	2VI.IV.I
Prerequisite Inventory Units 8 and 9 (S)	AVI.IV. 3
Homework; Prerequisite Inventory, Units 8 and 9 (S)	XVI.IV. 10
Homework Solutions, Prerequisite Inventory, Units 8 and 9 (I)	XVI.IV. 11
Reading Assigrments; Unit 8 (S)	XVI.IV. 12
Lecture 8-0 Outiine (${ }^{\text {(}}$)	SVI.IV. 13
Lecture 8-1 Outinne (I)	SVI.IV.15
Lecture 8-1 Iransparency Presentation Guide (I)	XVI.IV. 19
Lecture 8-1 Transparencles (S)	SVI.IV. 20
Lecture $\overline{8}-\overline{2}$ Outiline (I)	\%VI.1V. 27
Lecture 8-2 Transparency Presentation Guide (I)	XVI.IV. 30
Lecture 8-2 Transparencies (S)	XVI.IV. $\overline{\mathbf{1}}$
Lecture 8-3 Outinne (I)	XVI.IV.39
Lecture 8-3 Transparency Presentation Guide (I)	XVI.IV. 44
Lecture 8-3 transparencies (S)	XVI.IV. 45
Homework, Unit 8 (S)	XVI.IV. 50
Homework Solutions, Unit $\overline{8}$ ($\overline{\mathrm{I}}$)	2VI.IV.54
Quiz' Dnit 8 (I)	EVI.IV. 82
Quiz Solutions; Unit 8 (S)	EVI.IV. 90
Reading Assigments, Unit 9 (S)	SVI.IV. 92
Lecture 9-0 outinne (i)	SVİIV. 93
Lecture 9-0 Transparency presentation Guide (I)	: $\overline{S T I}$ IV. $\overline{98}$
Lecture 9m0 Transparencié (S):	スVI:IV. 99
Lecture 9-1 Outifo (I)	. $\overline{\text { WVIV}}$.IV. $10 \overline{0}$

GMPM

i

Lecture 9-1 Transparency Presentation Guide (i)	XVI.IV.107
Lecture 9-1 Iransparencies (S).	XVI.IV.108
Lecture 9-2 Outline (I)	EvI.IV.111
Lecture 9-3 Outifine (I) .	IVI.IV. 116
Lecture 9-4 Outline (I)	IVI.IV. 120
Lecture 9-4 Transparency Presentation Guide (I)	. $\overline{\text { XVI }}$. $\overline{\text { V }}$. $12 \overline{26}$
Lecture 9-4 Transparencies (S).	XVI.IV.127
Homework; Unit 9 (S)	XVI.IV. 136
Homework Solutions, Unit $\overline{9}$ (İ)	XVI.IV.139
Quiz, Unit 9 (I)	XVI.IV. 148
Quiz Solutions, Unit 9 (I)	IVI.IV.153
Final Examination; Second Term (I)	$\overline{\text { XVI.IV.157 }}$
Final Examination Solutions; Second Term (I)	XVI.IV. 170

Pāckage Development

The QMPM package was developed at the School of Urban and Public Áfāirs (SUPA) of Carnegíe-Meilon University (CMU). SUPA ōfers both doctorā and masters degree programs which emphasize pubiic sector professional activities and research. The school is heavily comitted to research and to fnnovations in teaching. The educationai staf̄ at SUPA is quantitatively oriented and recognizes the essential importance of sophisticated quantitative training at ail graduate leveis.

At SUPA the need to develop skilis for performing quantitative studies and for presenting reaults in an informative and effective fashion has always been recognized. Until 1975, batisfying this need was viewed in the traditionsl manar of inciuding a yearis
sequence in introductory statistics either through a course offered iñ SUPA or through other statistics courses available at CMU.

In 1975 an attemt was māe to break with the past. QMPM was put together following the acquisition of information on data analysis problems experiencéd by a broad range óf practicing pubilc managers and administrators. From mailed questionnaires añ Interviews with practitioners it became evident that both the approach and content of traditionā couraes were suboptimā as far as the needs of public sector professionalé were concérned. As é consequence, a course was developed that emphasized graphics, exploratory proce. dures and robust analyses. In addition; topics such as survey design, sampling methods and analysis of cross-ciassified data were added while other; less reievant material; was excised. .

In the $1975-1976$ academic year an experimental version of QMPM was offered to approximately 20 first year masters studentes at SUPA. Emphasiagng application and based in a relevant empiricai context, the course proved to be an outstanding success. When the NIDS/HUD curriculum development project was announced, QMPM seemed tó be a natural base for a proposal and it was ultimatély funded.

The courae development activity took place between May 1976 and August 1977. Simultaneously, during the academic year, an experimental version of the course based on the curricular material developed under the NIDS/HUD subcontract was taught. In additiong a short version of QMPM was taught as part of an in-service training program for personnel in community mental health programs. Feedback in the form of student opinions and outside coluative
observation of student progress were used to revise the fnstructional material: The final product has been tested under a variety of situations and promises to provide a significant improvement in the educational experience of pubíc administrators and managers in the area of data analysis and statistical methods. Leinhardt Leinhardt, and Wasserman (1977) reports results of a quantitative evaluation of the experimental 1976-1977 impiementation.

References:

Bishop; Y.M. M.; S:E. Fienherg; and P: W. Holland (1975); Discreté Multivariate Analysis; Cambridge; Massachusetts̄ The M.I.T. Press.

Erickson; B.H. and T.A. Nosanchuk (1977) Understanding Data; Toronto: McGraw-Hill Ryerson.

Fairley, W. B. and F. Mosteller (1977) editors; Statistics and Public Policy, Reading; Massachusetts: Addison-Westey.

Fienberg, S.E. (1977), The Analysis of Cross-Classified, Categoricai Data, Cambridge; Massachusetts: The M.I.T. Press, in press:

Hoagin, D.C. (1976), A First Course in Data Analysis, preliminary edition, Reading; Massachusetts: Addison-Wesley.

Huff, D., How to Lie with Statistics, New York: Norton, 1954
Leinhard̄, G., S. Leinhar̄̄t, añ s.S. Wasserman (1977) "An Experimental. Evaluation of lwo Approaches to Teaching Applied Statistics and Data Analysis;" working paper, Carnegie-Mellon University; School of Urban and Public Affairs.

Leiuhardt, S. and S.S. Wasserman (in preparation) "Teaching Regression: An Exploratory Approach."

McNeij, D. R. (1977) Interactive Data Analysis, New York: John Wiley \& Sons.

Mosteller, F. and J.W. Tukey (1977), Data Analysis and Regression, Reading, Massachusetts: Addison-Wesley.

Tanur, J., èt.al., editors, Statistics: A Guide to the Unknown, San Francisco: Holden-Day, 1972.

Tufte, E.R., Data Analyas for Politics and policy, Engiewood Ciffe, N.J.: Prentice-Hall, 1974:

Tufté, E. R ., editor, The Quantitative Analysis of Social problems, Reading, Massachusetts; 1970.

Tukey, J.W. (1977) Exploratory Data Analysis; Reading; Massachusetta: Addison-Wēsiey.

Warwick, D.P. and C.A. Lininger, The sample Survey: Theory and Fractice, New York: McGraw-Hill; 1975.

Wonnacott, R.J. and T.H. Wonnacott, Econometrics, New York: Wiley, 1970.

QUANTITATIVE METHODS FOR PUBLIC MANAGEMENT
 INSTRUCTOR'S MANUAL

Developed by
SCHOOL OF URBAN AND PUBLIC AFFAIRS CARNEGIE-MELLON UNIVERSITY

SAMIJEL LEINHARDT; PRINCIPAL INVESTIGATOR and
STANLEY S: WASSERMAN

Under Contract to
THE URBAN MANAGEMENT CURRICULMM DEVELOPMENT PROGRAM
THE NATIONAL TRAINING AND DEVELOFMENT SERVICE
5028 Wis consin Averné, N.W. Washington, D.C. 20016

Funded by
The Office of the Assistant Secrétary for Policy Development and Research
U.S. Department of Housing and Urban Development

Acknowiedgements

Assistance in the preparation of this package was provided by Biaine Aikin, Larry Albert; Joseph Chinili; Steve ciark; Marjorie Farinèlil, Janice Greene, Gretchen Hemingsen, Paul W. Holland; J.
 Diane Warrinex, and tammar zēhē.

Introduction
Objectives
Instructor 's Role
Instructor's Qualifications
Staféf Support
Technical Resources
Use of Instructional Materials
Use of the Computer
Audience
XVI.00.1
XVI. 00.2

XVİ.00.3
XVI. 00.5
XVI.00.6

XVY - 00.7
$\overline{x y y} .00 .8$
XVİ-00. 12
XVI. 00.12

Introduction
Quantitative Methodstar Public Management contains instructional matérials to cover four majaŕw wes in data anāysis: (I) Exploration of batchēs of data; (II) Modeling continuous data using regression; (III) Probability, sampling and inference; and (IV) Modeling crossclassified data: Each module consists of lecture outifnes, reading assígments; examinations and exezcises with solved problems; masters for visuals; prerequisiteostontories, and material for distribution to students. The lecture out lines are to be used as présentation

guidē for instructors. Allother matēial is for stưent use. Computer routines are also availabie for student use in performing analyses of empiricai data:

The QMPM modules are not self-contained instructional components: Their use depends upon the availability of various comercially dis=
 detailed below and in the modules themselves.

All modules are similarly organized. The instructional strategy used follows established educational theory. Prerequisite inventories are employed to determine whether students possess knowledge of various corcepts and methods upon which mastery of anit's substance depends. Handout material and references provide students with detailed and sufficient information on these prerequisites. Broad based understanding of technical areas is avoided at this stage, with focus instead on specific tools or ideas that are used in the untts. The units themselves contain introductory material in the form of advanced organizers which sensitize the student to topics and ideas

QMPM
that wili be covered in the unit. New material is then presented in an instructional. mode with general principles followed by examples of applications or development. Visuais, in the form of overhead projector transparencies, are used extensively, students should have copies of these slides in hand while the lecture proceeds. All examples are based on empirical data descriptive of or relevant to public policy or administration: Students demonstrate leaned skills in three situations: homework, papers and quizzes. Homework is designed to present students with problems to be solved in unpressured time feriods: Solution of specific; well-defined problems are at issue here papers provide longer study periods and require demonstration of comprehension and interpretation of an unstructured problem. Exams require students to operate under pressure to solve relatively strāghtforward problems. Text references añ readings on empirical studies in which quantitative analytic methods àre appliéd to empirical policy issues provide stūents with diverse examples of applications: Computer operations permit students to participate personally in numerous analyses. it is recommended that students write one 10 to $\overline{12}$ page paper at the conciusion of each module; the topic should be selected by the student in consultation with the instructor: The paper should contain a quantitative analysis of of a public policy issue and an extensive verbal discussion of the study:

objectives

The goal of QMPM is to help students of public management and administration master a diverse set of data analytic tools. closely associated with this gōal is that of providing students with a critical sense of what is a good and useful analysis and with skills to present relatively
compifcated analyoes to non-technical audiences in such a manner that resuits and impícations are effectively commuicated: Paper assignments, as discussed above, are essentíal to achíeving thís gōà.

Instructor's Rolē

Quantitative Methods for Public Management (QMPM) is first and foremost a course in data añ̄̄ysis and stātistics. QMPM has béen designed under the assumption that students will not continue a course of study in statistics beyond their experience with QMPM: (Although QMPM does provide ail essential material for continuation): Thus; the material covered, the presentation process, empiricai context and instructional activities have been designed to achieve both a broad introduction to quantitative methods and a deep; lasting learning of analytic skills:

The role of the instructor in accomplishing these objectives is critical. Because courses in quantitative methods are traditionally thought of by students as "hard" courses and even irrelevant to their main concerns, instructors of required quantitative methods courses face a particularly difficult task. When the material covered is as novel as that in OMPM the behavior of the instructor becomes even moré céentrà to succéss.

The instructor mast possess séif-assurance and be able to demonstrate competence. with the methods taught. instructor familiarity With the substance and procedures of $Q M P M$ is, thus, essential. Prior to teaching QMPM the instructor should proceed through all of the Instructional material so that the essential features and idiosynracies of the course are known. To a great extent, QMPM is an
attitude-an attitude towards data, their manipulation and analysis. For successful transference of this attitude to students, instructors must be able to demonstrate it in their own behavior; in their wilingness. to pursue unorthodox analysis and to explore data in attempts to make the data "talk." This attitude is not easily transmitted to students, especially students who may possess only weak mathematical skills or who have been taught that data are sacrosanct. Nonetheless; acquisition of this attitude towards analysis and towards quantitative data may be considered to be the primary behavioral objective of QMPM.

The instructor is expected to perform much in the manner of an instructor in any traditional course. A lecture situation is assuméd in which the instructor presents material on a scheduled hasis before a group of students. The lécture outlines should be used by the instructor as a guide in the preparation of a lecture: The instructor should promote questioning by stidents, pursue general problems of understanding in depth but leave for private consuitation an individual student's problem when a brief response is uqusatsfactory.

The instructor should constry $c t$ dany ex mples of the application of QMPM procedures. Thēse , amples nêd not be elaborate but should demonstrate how understan ing of a policy or administrative issue is improved by use of data"analytic tools. The instructor should áp tho develop examples based on local situations or topics of current nationai or internat́onal interest. Artifićal examples, unlēss the point they make cannot be covered in any other way; should be avoided:

The instructor should be available and responsive to student inquiries outside of formally scheduled class periods. Students are required to engage in numerous exērcisēs and should be encouraged to
try altēnative approaches to a given probiem rā̄̄̄̄ than seek the one "correct" answèr. Since this will inevitabiy lead some students Into situations which they do not have the knowledge to understand, they should know that help is available. Remember; good positive attitudés towards the performance of analysis are essential. Lack of support from fanstructors sets up a poor role model and turns students off. Since courses in quantitative methods have historically suffered from à poor image, instructors should act to compensate for student insecurity.

Besides being available and supportive, instructors should provide students with rapid feedback on exercises, paper assignments, and exam performance: Because of the diversity of topics covered in QMPM students may be unable to use feed̄ach information regarding a particular behavior or skill if it comes long after demonstrat́on. In àdítion, feedback is most ēféctive in learning if it follows rapidly on behaviorai action: When it doēs, students can adjust their understanding or modify a behavior while the activity is fresh in their minds and, possibiy; demonstrate the correct behavior and have it confirmé in another círcumstance.

Instructor's Qijaifications

The instructor is assumed to have experience teaching quantitative methods or státistics at the graduate level. Experience at performing empirical studies contributes to the instructor's ability to rēatē abstract notions or methods to real life sitūations. It is. not essēntial for the instructor to be a statistician or mathematician. Nor is it essential for the instructor to have extensive prior experience
with all the topics covered in QMPM: An instructor with knowledge of classical statistics is advised to read carefully ail text and reference material cited in the package and, in particular, to read Tukey, J.W., Exploratory Dātā Analysis̄; Addison-Wésley, 1977; Mostellēr, F.M. and J.W. Tükēy, Datā-An̄alysis and Rēgrēs̄sion: A Second Course in Statistics, Addison-Wesley; 1977; Bishop; Y.; S: Fienberg and P.W. Holland; Discrete Multivariate Analysis; MIT Press; 1975; S: Fienberg; The Analysis of Cross-ciassified Categoricai Data, Mit Press; in process; McNeil, D.R., Interactive Data Analysis; Wiley, 1977, and Erickson; B.H. and T.A. Nosanchuk, Understanding Data, McGraw-Hill, 1977.

Staff Support

QMPM can b e taught by a single instructor. However, with a sizable class (10 or larger) the need for rapid feedback and availability may infringe upon an instructor's other responsibilities. In such situations it is highiy advisable to have teaching assistants available. These individuals should have regular hours in which students can have access to them and should take responsibility for grading homework exercises and quizzes. Since QMPM is supplied with worked problems for exercises and exams, performance of these activities by teaching assistants should pose no díffífultíes.

If the computer routines supplied with $Q M P M$ are employed, then a śtaf \bar{f} member should take responsibility for intēacting with students regarding their usage. The system thāt is provided hās bēen extēnively tested and debugged and, therēforē, should need no software work beyond that required for mounting on the local computer: However; students unfamiliar with computer software packages may become unnecessarily frustrated by their own lack of knowledge about the system. This can
be relieved by assigning either a teaching assistant or another staff member the responsibility of becoming adept at using the system and relying on that person to act as an inhouse systems consultant. Data acquisition and mounting might be handiē by the same person. $\overline{\mathrm{I}} \mathrm{t}$ is suggested that a $\overline{1}$ arge data library should be acquired and left open to studeñ exploration.

Techaical Resources

Because of the uniqueness of QMPM no sing le textbook is fully satisfactory. Indeed, even combinations of texts fail to provide students with complete material for studying some topics covered in the course. For this reason it is advisable to provide students with alternative means for reviewing the contents of a lecture. Instructors might wish to reproduce copies of lecture outlines so students will have a topic outline of covered material. Of particular utility here, however, is the use of video taping equipment. if such resources are available, then lectures should be taped and a tape library of the course constructed which students can exploit at any time. Such devices have been highly regarded by students when employed in experimental implementations of QMPM. A technical requirement for such equipment is the ability to resolve small characters when written on a blackbōard.

QMPM is designed to be taught by an instructor in a traditional lecture formāt. A hall or room which possesses ample bīackboard space is required: The instructor should feel frée to write examples on the board, draw figures; and othērwise illustrate materíai as the need arises. If video taping equipment is used, the room should have

QMPM

Bufficient lighting to permit high contrast resolut́on of material written on the blackboard. Since the use of overhead transparencies is assumed, the room should be provided with a projection screen and a location for the projecter. QMPM comes with dense paper masters of trānsparencies. These should be reproduced onto plastic sildes by the instructor through use of appropriate equipment. The instructor should distribute paper coples of these transparencies to students béfore a lecture and should also assure that reproductions of other hand-out material are available on a timely basis. Since references to contemporary texts and articles occur in both student and instructor mátèrial, the availabilíty of à iibrary is advantageous.

If thē computer routines āre to bé used, then the routines should be mounted on àmputer before the course commences. While the system has been adequately debugged, there are likely tó bé local machine ídiosyncracies that must be overcome for efficient operation. Some soffware may have to be written at the implementation site as a consequence: The computer system is designed as an interactive system. A time-shared computér and hard-wired or acousticaliy coupled printing terminals à à suggested. CRT's are not recommended. While the system can be operated in à batch processed mode; íts éducational utility is maximized when it is operated interactively.

Use of Instructional Materials

The primary curricular components contained in the modules are lecture outlines; one for every 90 minute lecture in the course. These are organized with a zero th lecture containing advance organizés for students followed by lectures containing substantive presentations.

Instructors are expected to use these components as topic guides and are not expected to adhere to them absolutely. Both the level of preparation of students and the nature of the fuplementation should condition the actul presentation onematerial. Similarly, visuals in the form of overhead projection transparencies, homework problems, examplēs, and tēst material are provided ās guidess. While those delivered in the QMPM package can be used as they stand, the instructor should make an effort to construct comparable examples and problems which are relevant to the specific time and place of the implementation. In addition it is the responsibility of the instructor to see that copies of materiai to be used by students and copies of transparencies be prepared and distributed.

The expected usage is às follows (recalling that each module is organized in units): A prérequisite inventory containing material whose comprehension is required for mastery of QMPM unit topics is distributed: Homework problems on prerequisite material (which can be taken home or done under innciass test conditions) follow. Solutions to these problems are given tō students after they have attempted to solve the problems. Difficulties with préequisite inventory problems should be resoived by the student and confirmed by the instructional staff prior to exposure to new máerial:

A lecture Noo (where indicates the unit) precedes every unit. This lecture (which is discretionary) contains advanced organizeres tō focus the student's attention on topics that will be covered in the unit. The more complex the material covered in the unit the more important

QMPM

are the advanced organizers. The instructor uses the lecture.outline In this and every case as a guíde, modifying and adjusting the presentation as stȳe and context dictate.

The material prēsues à lecture, i.e., an instructór standing before ān aứfence and making an orā preséntation. Each lecture is 90 minutes in duration (which may be organized into one or two class sessions). Présentation aídes that are also assumed are a bīackboard with space sufficient for copious drawings and writing equations, an overhead projector and scréen and duplication facilities for producing handouts prior to a lecture. Suggested presentation sequences for transparencies are keyed by number in the lecture outine (numbers in brackets on righthand side) and sumarizēd in a transparency guide.

Foilowing presentation of the unit's introductory lecture a student feading assignment is distributed. The number of lectures for each unit depends upon the unit's contents. Foilowing the sūbtantive lectures instructors should provide a review lecture, àthough such lectures are discretionary. Clāsses of advanced or experienced students may not need review while slower students will find reviews critical to compléte mastery.

Homework problems and quiz material with worked solutions foilow each unit's lecture. The homework schedule should assure rapid return of \bar{g} raded and corrected problems. Students should require no more than one week to hand in $\overline{\text { nomework }}$ and should rēeive corrected home= work in two to three days. Studenté failing to comply with homework requirements or who consistentiy hand in érroneous problem sets should bē singled out for remedial help. A unit guíz should bē conducted
in a classroom under examination conditions. Students should be permitted the use of hand-held calculators.

This entire procedure is repeated for each unit. A week of class should normally include three hours of instruction with one to two additional hours available for workshop and review (with instructional staff). Workshops are also used for the presentation of special material (such as "Some Principles of Graphics for Tables and Charts" in Module I). The instructor is responsible for organizing and facilitating the functioning of the course. The instructor is also expected to elaborate on the policy relevant nature of examples; problem sets; and outside readings. These elaborations should be made during normal lecture presentations and through handouts of worked problems derived from local (i.e., the locale where the implementation occurs) situations.

Workshops should include extensive discussions of applications. Students are expected tō attend iectures, complete homework problems, and take quizzes and the final examination. In ad̄ífon, students should be required to produce two papers (10 to 20 pages in iength) within à semestēr's time in which QMPM téchniques have been applied to a policy or pubilc management problem of the student's own choosing. These requirements allow the student to perform data analysis in three types of situations: homework provides structured problems with lax time constraints; quizzes provide structurē probiems with tight time constraints; papers provide unstructured problems with extended time constraints. In all cases grading should be based on the effective solution of the problem and its interpretation by the student. Total student preparation effort should range from two to four hours per iecture.

GMPM

Use of the computer

QMPM ís providē with a computer package containing a set of analytic routines and a data library. These are meant to be used by the student in exercising learned skilis. Students Ere expected to use the system in doing homework problems and writing papers. While not essential to the successful implementation of QMPM, the computer system does provide students with opportunfties for performing elaborate studies and for carrying out numernus analyses where one study would otherwise be considered sufficient. Since empirical data are idiosyncratic the effective analyst and critic of analyses should have extensive 'hands-on" experience with empirical studies. Such experiencé often is a consequence of \bar{a} long career. Students of QMPM, however, by using the computing systen, can develop such experience whie they participate in the course. Homework problems that require computer assistance are indicated. Alternative software Which permits students tó perform necessary computations on a machine may be used in place of the routines in the QMPM package.

Audience

QMPM is designed as an entry level masters course of one year duration: Students in such a class are expected to have successfally completed college mathematics courses so that they are proficfent in algebra: While some natrix algebrā and calcuius are used, the prerequisite inventories and handouts supplied जth QMPM provide sufficient coverage of these tools. No knowledge of statistics is assumed nor is any experience with computers or programing required.

Because of its unitized-modular structure à variéty of courses other than one year sequence may be generated from the QMPM package. At the graduate school level these may take the form of short courses on specific topics or one semester courses Containing selected modules. in-service training programs may also be developed. In each case atudent prerequisites are the same as for a one year courbe save that certain advanced untes in the package build upon material covered in other units.

QUANTITATIVE METHODS FOR PUBLIC MANAGEMENT STUDENT' 'S MANUAL

Developed by
SCHOOL OF URBAN AND PUBLIC AFFAIRS CARNEGIE-MELLON UNIVERSITY

SAMUEL LEINHARDT; PRINCIPAL INVESTIGATOR and
STANLEY S. WASSERMAN

Under Contract to

THE URBAN MANAGEMENT CURRICULUM DEVELOPMENT PROGRAM THE NATIONAL TRAINING AND DEVELOPMENT SERVICE $502 \overline{8}$ Wisconsin Avenue, $\mathfrak{N} . \mathrm{W}$. Washington, D.C. 20016

Funded by
The Office of the Assistant Secretary fōr Poíicy Devélopment and Research
U.S. Department of Housing and Urban Development

Acknowled gements

Assistance in the preparation of this package was provided by Blaine Aikin, Larry Albert; Joseph Chmilit, Steve Clark; Marjorie Farinelli, Janice Greene; Grétchen Hermingsen; Paul W. Hoiland; J. Michāel Hopkins, Gaea Leinhardt, Richard Sandusky, Chístine visminas, Diane Warriner, and Taminar zehē.

Introduction	$\overline{X V I} \cdot \overline{0} \overline{0} \cdot \overline{1}$
Audience	$\overline{X V I}, \overline{0} \overline{0} \cdot \overline{2}$
Instructional Organization	XVI.000. $\overline{2}$

Introduction

Quantitative Methods for Public Management (QMPM) is a course of instruction in data analysis and statistics for students of public management and administration. The course is designed to teach you how to perform and criticise data analyses and how to interpret and present analytic results for effective communcation to non-technical audiences. The course was developed at the School of Urban and Public Affairs of Carnegie-Mellon University às part of à curriculum development project funded by the Federal Department of Housing and Urban Development:

QMPM is structured into four modules which cover a diverse set of quantitative analytic methods: Because of its modular structare your instructor has the option $6 f$ presenting all of the material; in which case a year long course of study is assumed, or selecting components for shorter periods of instruction: The topics covered have been selected specificaliy for their utility in policy and sdministrative studies: Contemprary educational theory has been used throughout to assure that you will have the greatest chance of mérering the màrial and devēoping a deep understanding of principles. In adíition; to improve relevance of the course, $\bar{a} \overline{1} 1$ examies; exercises añ examinations are bāsed on empirical data that derive from or are relevant to pubiic policy and administrative issues:

Audience

QMPM is designed as an entry level year long mastērs coursé. However, its modular structure permits it to be used in shorter course sequences and in in-sērvice training programs. The student is assumed to have successfully mastered a college mathematics course. In some instances mathematical skills beyond this levè are required. In these casēs a prérequisitè invētory test will bé administered by your instructor and material will be provided to aid you in acquiring mastery of the necessary concepts and tools.

Instructional Organization

QMPM is designed as a lecture course: Your instructor wili prepare presentations based on the instructional material in the package. Each unit of material will be preceded by a presentation in whici the instructor 11 describe the objectives of the unit, the types of skills you will learn and the nature of the problems these skills will enable you to solve. These advance organizers will hélp focus your expectātions about thé unit and will enhance your réceptivity whèn nēw information is̄ provided.

You should prepare for each lecture by reading the text and article àsignments béfore clāss. Thēse rēer to textbook discussions and application examples. Endeavor to become as familiar ase possible with each new idea you encounter so that each lecture will be more readily understood. You should expect to spend bētween two and four hours preparing for each lecture.

Prior to each lecture you will receive a handout of répró ductions of any visuals your instructor will use in the presentation.

This will enable you to refer to visuals during the lecture which are not at that moment being profected. The lecture is keyed to these displays, which provide examples and figures illustrating concepts and methods covered in the lecture.

Düring a lécture you should feél free to rāsé questions concérning material being presented. It is important that you feel that you understand the procedures taught and can apply them in other contexts.

Following each lecture you should use your notés and copies of the visuals to review the lecture's substance. If the lecture has been video eaped you should use this resource to review aspects of the $\overline{1} \overline{e c t u r e ~ t h a ̄ t ~ m a y ~ s e e m ~ m o r e ~ d i f f i c u l t ~ t h a n ~ o t h e ́ r s . ~}$

Homework éxērcisēs will bè distributed each weèk. Thése s̄hould be attempted as soon as the topics shey refer to have been covered in class. It is absolutēy criticai that you do the honework. Data anāysis is a skili which can only be mastered through use. The homework gives you an opportunity to exercise and perfect your newly learned skills by exploring the kind of data that you are likely to encounter in your professional career. You should try to become facile at organizing, analyzing, and interpreting these data. QMPM is designed to maximize the benefit you wili derive from learning quantitative methods, but there is no substitute for extensive experience.

In doing your homework and in taking examinations you will find a hand calculator to be invāluablé. Thésé dēvicēs aré rēlatively inexpensive and one should be purchased āt the beginning of the course. You will need a machine that has the four arithmetic functions;
logarithms and exponentiation. A memory is advantageous but not necessary.

The QMPM package includes a computer system. If this system is aválable in your course you should learn to use it early. it will hèp your learning experience by removing the drudgery of repetítous aríthmetical operations from four exercises and permit you to concentrate on analytic strategy and on replicating similar analyses on different data sets: Thus, you will be able to amass more experience with data anaysis than if you had to rely on hand calculations. Some exercises supplied with the course are meant to be done on a computer: These will be so indicated.

QMPM is supplied with worked exercises and exam problems. Thus, you can expect rapid feedback from your instrictor if you complete your assignments promptly When feedback on new skills occurs shortly after demonstration of the skill; the learning process is more efficient and effective. This is particularly important in the case of a technical course where new skills build on older ones. There is a cumulative process involved which will be short circuited if you fall behind aignificantiy.

As you progress in QMPM you will discover that other courses that you may be taking will become easier. QMPM covers basic notions and methods in data analysis and statistics. The procedures you will learn in QMPM are used throughout the social and poifcy sciences; and thus articles or textbooks you may read in other courses can be expected to make use of them. Consequently, successíul mastery of QMPM will enhance the successfulness of your entire program ōf study.

QUANTITATIVE METHODS FOR PUBLIC MANAGEMENT
MODULE \bar{I}, REVISED

Developed by
SCHOOL OF URBAN AND PUBLIC AFFAIRS
CARNEGIE-MELLON UNIVERSITY

SAMUEL LEINHARDT; PRINCIPAL INVESTIGATOR and
STANLEY S. WASSERMAN

Under Contract to

THE URBAN MANAGEMENT CURRICULUM DEVELOPMENT PROGRAM
THE NATIONAL TRAINING AND DEVELOPMENT SERVICE
5028 Wisconsin Ávenue, N.W. Washingtón, D.C. 20016

Funded by
The office of the Assistant Secretary for Poiicy Deveiopment and Research
U.S. Department of Housing and Urban Development

Acknowledgements

Assistance in the preparation of this package was provided by Blaine Aikiñ, Lāriy Albert, Joseph Chmill, Steve Clark, Marjorie Farinelli, Janice Greene; Gretchen Hemingsen, Paul W. Holland, J. Michāel Hopkins, Gàea Leinhardt, Richard Sandusky, Christine Visminase, Dlane Warriner, and Tammar Zeheb.

TABLE OF CONTENTS
Material intended solely for the instructor is denoted by a (I). Material that should also be distributed to the students is denoted by a (S).

Page

General Introduction to Quantitative Methods for Public Management (QMPM) (S)
XVI.I.1

Introduction to Module I (I)
XVI.I. 7

Prerequisite Inventory, Units 1 \& 2 (S)
Homework; Prerequisite Inventory, Units $1 \& 2$ (S)
Homework Solutions, Prerequisite Inventory, Units 1 \& 2 (I)

Reading Assigmments, Units $1 \& 2$ (S)
XVI.I. 36

Lecture 1-0 Outline (I)
XVI.I. 38

Lecture 1-0 Transparency Presentation Guide (I)
XVII.I. 44

Lecture 1-0 Transparencies (S)
Lecture l-1 Outline (I)
Lécturē 1-1 Transparency Préséntation Guide (I)
Lēcture l=1 Trānspārenciès (S)
Lecture 1=2 Outline (I)
Lēcture $\overline{\mathbf{l}}=\overline{2}$ Transparency Presentation Guide (I)
Lēcture $1=2$ Transpāencies (S)
XVI.I. 45
XVI.I. 52
XVI.I. 60
XVI.I. 61
XVI.I. 71
XVI.I. 80
XVI.I. 82
$\bar{L} \mathbf{e} c t u r \bar{e} \overline{\mathbf{l}}=\overline{3}$ Outīine (I)
$\bar{L} \bar{e} c t u r \bar{e} \overline{\mathbf{l}}=\overline{3}$ Trānspārency Prēsentation Guide (\bar{I})
XVI. $\bar{I} .97$
XVI.I.104

Lécture $\overline{\mathbf{1}}=\overline{3}$ Trānspārencies (S)
XVI.I. 106

Lécture $\mathbf{1 = 4}$ Outline (I)
Lècture $\overline{\mathbf{l}}=\overline{4}$ Trānspārency Prēsentation Guide (I)
$\overline{X V I} . \bar{I} . \overline{1} \overline{2} \overline{1}$
XVI. $\bar{I} . \overline{125}$

Lecture 1-4 Transparencies (S)
XVI.I. 126

	Page
Homework, Unit 1 (S)	XVI.İ139
Homework Solutions, Unit $\overline{1}$ (I)	XVİI.15
Quiz; Unit 1 (I)	IVI.I.167
Quiz Solutions; Unit 1 (I)	XVI:I.170
Lecture 2-0 Outinne (I)	XVI.I.172
Lecture 2-0 Transparency Presentation Guide (I)	XVI.I.177
Lecture 2-0 Transparencies (S)	XVI.I.178
Lecture 2-1 Outine (I)	XVI.I.186
Lecture 2-1 Transparency Presentation Guide (I)	XVI.I.192
Lecture 2-1 Transparencies (S)	XVI.I.193
Lecture 2-2 Outline (I)	XVI.I. 200
Lecture 2-2 Transparency Presentation Guide (I)	XVI.I. 207
Lecture 2-2 Transparencies (S)	XVI.I. 208
Homework, Unit 2 (S)	XVI.I.221
Homework Solutions, Unit 2 (I)	XVI.I. 225
Quiz, Unit 2 (I)	
Quiz Solutions, Unit 2 (I)	XVİ.I. 239
Some Principles of Graphics for Tables and Charts (S)	XVI:I. 242

General Introduction to Quantitative Methods

 for Pubilc Management (QMPM)Many of you are wondering why students of public management are required to study quantitative methods. The reason is this: Pubitc management invoives decision making, and making effective decisions requires careful evaluation of information: Today; information of relevance to pubic managers often comes in quantitative form. Its evaluation requires an operational knowledge óa analytic méthods. This course ts designed to provide this knowledge by teaching you
 títátuve datá, operate on them; and use them to make better, more éf $\mathfrak{f e c t i v e ~ d e c i ́ s i o n s : ~ T h e ~ c o u r s e ' s ~ c u r r i c u l u m ~ h a s ~ b e e n ~ c a r e f u l l y ~}$ désígned to provide you wíth a varfety of tools which will cover most
 help make the course representative of reality it contains an exten= sive inbrary of real data, the same kind of data that operating pub= ific managers use, so that your learning experiences will come as close às possibie to the reaifties of public management. You will be asked to é exercise your new skills on these data as you progress. To help you acquire these skilis there exists an elaborate support system composed ō \bar{f} pedagogic p \bar{p} The system wili be described in this introduction and in a class presentation.

QMPM is a new course. One might even say that it is a revolutionary course. It ís revolutionary in that it breaks with traditional approachés to teaching quantitative methods in both its pedagogy and
its substance. Pedagogically, it emphasizes mastery iearning concepts, the organization of topics into inferred iearning hierarchies with ciearly specified skill prerequisítes. You wili need to know the prerequisite material before you can proceed through a topic. These préequisites include all but the most basic skilis that you will need to succeed. There are no híden assumptions; no special knowledge is required to master a given topic other than what is ciearly spelled out In the prerequisite inventories that precede each of the four major sections or modules composing the course. Facilities have been provided and time will be set aside to help you master these prerequisites should they be unfamiliar to you:

Mastéry learning also means that you will not be graded on a curve or normed. There is nothing in this course that is toordificult for any of you to master. If you all master the materiai, you wili all pass high. If problems arise because of a lack of comprehension or understanding; numerous resources exist to help you locate the specific difficulty and obtain ultimate mastery of the skili: In generai, you should feel assured that every effort will be made to help you master a skill before pushing ahead to new material.

The other new àspect of this course rests in the séeiection of topics to be covered. QMPM is not a course in statistics. Whilie some topics will be covered that are discussed in traditionai statistics courses; they are approached from a pragmatic rather than \bar{a} theore $\bar{e}-$ tical point of view. The theory discussed will be just sufficient to iñoure comprēension of particulā skills and awareness of their ímí tations. The emphasis will be on doing analysis rather than studying analysis.

Although QMPM is not a statistics course in the traditional sense, it is a course in the analysis of quantitative data. In addition to some traditional methods of statisticā analysis; a variety of new tools and analytic méthods which were pioneered in the late 1960 's by john W. Tukey, a statistician at Princeton University and Bell Laboratories, will be covered. The new methods which Tukey and others have been developing emphasize the exploratory nature of data analysis; the "detective" work that precedes the traditional inferential stage of confirmatory statistics. In explocatory data analysis (EDA), thé analyst first organizes the data to understand what kinds of questions can be answered by them and what kinds of operations must precede the application of confirmatory or inferential procedures.

Exploratory data analysis possesses severai features that are especialiy useful to public managers. Fírst, it reifes heavily on the use of graphic displays as analytic tools. Tradíionaily, displays have been used as final summaries presentē oriy after an analysis was completed. In QMPM, however, graphics are used as integral parts of the analytic process, so that they may provide crítical information about the data and the process of the analysis. The graphics used in QMPM āre rēlātivēy simplē and easily learned. Indeed; once the graphical methods are introduced you will discover that they have a kind of "face validity"--what they mean is obvious from the way they appear. The face validity of EDA graphics will be a great advantage to you in your professional career. The graphics that you will learn to use can be presented to non-technical audiences and will probably be understood with only minimal explanation: Consequently, rather

QMPM

complicated notions or analytic results can be communicated during presentations to individuals who have a wide variety of backgrounds-a situation you will undoubtedly encounter often in your professional careers.

The second feature of EDA which will enhance its utility to you is the use of resistant or robust procedures. These are procedures which yield results which are relatively unaffected by occasional missing or incorrectly recorded data valués or incompletely specified models. Most traditionā confirmatory s̄tatibtical procedures are not resistant in that they are easily influenced by à few widely divergent data values, nor are they robust in that the misspecification of a model can yield invalid rēsults. But public mānagèrs of ten must rely on data of less than highest quality, datā collected for othē purposes, and models that neglect somé variablēs. EDA procedures àre pārticularly helpful in such situations. Thē résistant and robust qualitiés of the procedures covered in QMPM are so important that without them in many situations an invēstigator would not bee able to conduct a thorough study.

Many of the techniques you will learn in this course, both exploratory and confirmatory, are among the newest in the field of data analysis. Learning such up-to-date skilis wili put you on the "cutting edge" of the field. The newness of these techniques, however, does present some difficulties as far as commicating with others whose training in quantitative methods occurred some years ago: You will be learning procedures which have only recently been made available tó the general public. Most texts you wili use were published as QMPM
was developed. Not many téchnīcal dā̄a analysis ō pubī̄ management
 yourseif frequentiy explaining what you have done, even to individuals whom you might normaily beifeve were familíar with data anaiytic procedures.

Even though many of the techniques we wili cover are reiatively straightforward, some are complex. Moreover, even simple procedures performed on large data sets can be extremely time consuming when doné by hand. Consequently, a computer system (CMU-DAP for CarnegieMellon University-Data Analysis Package) exists to facilitate doing analysis. (This is an optional part of the QMPM package.) The system permits data entry, manipulation, and analysis in a simpified format. Doing data analysis on a time-shared computer wili facilitate your mastery of analytic skills by allowing you to try many different approaches to the same problem. Thus, you will be abie to gain wide experience in applying your skills without fear that you will have to invest an inordinate amount of time on arithmetic operations. By having the "grundge" work of data analysis performed by computer you should be free to concentrate on planning and interpreting your analysis and on exploring alternative approaches. If it is available in your course, you will be introduced to CMU-DAP during the second week of QMPM in a special three hour session, and will be expected to use it for both homework and paper assignments.

The library of real data that has been prepared for your use has already been mentioned. Typically, the data analyzed in traditional
statistics courses àre fabricated for the purpose of tlustrating a particular techniqué. More often than not; such data are very unreal-istic-not the type which you would actually confront in the "real world". Consequently, students, when they leave school and engage in data analysis in the field; often find that their training has not prepared them for the vagaries of reality. In $\mathbb{Q} M P M$ these situations are avoided. QMPM stresses the analysis of real data, data gathered from prāctitioners, faculty, students; añ published sourcēs. This colléction hàs been organized into a computér based DataBank thāt can be accessed with CMU-DAP. In addition to choosing data from the DataBank for ānālysis throughout the course, you will also be expected to gather reāl data and analyze it.

In sumanary, QMPM may very well be the most important course that you take in graduate school. You are to participate in a revolutionary approach to quantitative methods--you are cō-conspirators in an at tempt to makè data analysis relevant and useful to public management.

Introduction to Module I

Overview

Modulé I $\bar{o} \bar{f}$ the Quantitative Methods for Pubićc Management package contains two units, numbers 1 and 2. Unit 1, Single Batches of Data, introduces the student to the notion of a data batch, a fit, and $\bar{a} \bar{n}$ éfecect. It focuses on the organization, condensation, and analysis $\overline{\text { of }}$ simple situations, single batches. The general objective īs $\overline{\text { to }} \mathfrak{f}$ famíqurize students with data and éementary models and to provide students with a set of basic tools for sumarizing, displaying, and working with data. Single batches, essentially a single set of ōsservations on one variabié, are considered in depth. The tools int roduced inciude chiassicál procedures such as histograms, sorts, means; and standard deviations: But the emphasis is on tools of exploratory data analysis such as stem-and-leaf displays; order statistics and transformation procedures. The definftion and features of a well-behaved or Gaussian batch are also considered; and a special section discusses the features of good graphics and charts:

In unit 2, Multiple Batches of Data-Unordered, the student is introduced to the more complicated situation in which more than one distinct set of observations exist. The tools introduced in unit 1 are used in unit 2 to facilitate comparison of effects among batches. Since differences in spread among the batches can confound thedetermination of differences in level; a procedure for finding a transformation that equalizes spread is introduced. This procedure prepares students for variance stabilizing transformations; introduced in a later unit in the context of multiple regression.

$$
\text { XVI. } \overline{1} . \overline{7} \quad 5 \overline{5}
$$

GMPM

Specific Objectives

Unit 1
Upon successful completion of Unit i a student wíi bé ab̄ié to organize à batch of data using simple sorts, stem-and-iēá displays, and histograms. The student will be able to describe the batch of vālues using vārious computed sumary numbers and to display the summāry by constructing a schematic plot. In addition, the student wíli bé able to détērmine if a symetrizing transformation would facilitate contrāsting thē bātch with a wéll behaved batch and will know how to deter mine à good transformation for this purpose. The student wíl know how to recognize a well behaved batch and use and evaluate cìassícà sumary statistics in their description. The student will also have a criticāl appreciation for éffective graphic and tabular displays and be able to construct uncluttered, infornative charts containing quantitative facts.

Unit 2
Upon successful completion of Unit 2 a student will be able to recognize à set of non-ordered multiple batches and use parallel stem-and-leaf displays and parallel schematic plots to compare the batches to one anothér. To improve the effectiveness of comparison when spreads in the individual batches vary greatly, the student will know how to use median by midspread plots to find a spread stabilizing transformation. The student would then proceed to perform an analysis on the transformed dátá.
XVI.I. 8

Prerequisite Inventory Units 1 and 2

Units 1 and 2 of Module I focus on the analysis of single and multiple batches of data. Prior to the presentation of the material In these two units, we shall discuss several elementary concepts. The mastery of these concepts is an essential prerequisite to mastery of the skills taught in Units 1 and 2. Before proceeding to Unit 1 ; you should assure yourself that you are familiar with these basic concepts.

The inventory is divided into the following five sections:

1. Numbers--Properties and Representation

2: Data Vectors--Observations; Subscripts; Indexing, Sumnations
3. Data Sets--Variables and Various Transformations

4: Percentages
5. Plots and Graph Paper

Additional references to these topics appear at the end of this inventory: Specific topics in these five areas wili be reviewed in class only if the average performance of the ciass indicates that such discussion is necessary. If areas that you are weak in are not covered in class. you should consult a member of the course's teaching staff to determine how best to achieve mastery.

Séction 1. Numbērs̄--Properties and Representation
Throughout this course numbers are used. Consequently, the more important properties of the number system need to be reviewed. These properties are discussed in chapter 1 of Rosenbach, et.al. (see the end of this inventory for full reference).

QMPM

it $\overline{\text { in }}$ assumed that all numbers orked with in this course belong to the set, ór collection, R of real numbers. Reai numbers are those which can be represented by terminating or nonterminating decimals. Included in R are those numbers without decimal places; the integers: An integer may be positivé, $1,2,3, \ldots$, negative, $-1,-2,-3, \ldots$, or zero, 0.

When writing down single numbers, you should take the time to record ail the digits (including all the decimal places) in the number to convey as much information as the number allows. The digits of accuracy required in writing a number are called the significant digits or significant figures of the number. In general; the numbér of significant digits of a number equals the number of digits of accuracy that the measuring instrument allows. If inches are recorded with a rulē marked with tenths of inches, then the first decimal place of the recorded numbers wili always be a significant digit. For example, 10.0 inches has 3 ; and not 1 , significant digits. The population of New Engiand in 1790 is another example. In this year it was i,009,40 $\overline{8}$ persons. This number has 7 significant figures. If one chooses not : \bar{r} ecord $\bar{a}+11$ the digits of a number, the quantity of
 hàs béen approximated by $1,009,000$, a number with only 4 significant
 note how "fine" the scale of the measuring instrument is, since this knowledge is essental in determing the total number of significant digits of the recorded numbers:

Occasionally, numbers are expressed in a manner which draws attention to the significant figures of the number. This can be done by writing the number as a product of an integer power of 10 , $\bar{a} \bar{d} \bar{a}$ numbēr bētween 1 and 10, that is, a number with one digit to the left of the decimal point. This method of recording numbers is cailed scientific notátion. As an example, the 1970 population of the unitéd Statēs, 203,211,926 persons, cān be written as $2.03211926 \times 100,000,000$ (a hundrēd million) or 2.03211926×10^{8} (9 significant digits). We may wish to approximate this number emphasizing only the number of millions as $20 \overline{3}, 000,000$ or $2.03 \times 10^{\overline{8}}$ (3 significant digís). Table 1 shows various powers of 10 ; both positive and negative, that you should bē acquainted with.
[Table 1 here.]

Once a number is recorded in scientific notation, the number of significant figures of the number equals one more than the number of decimal places, and the correct power, or exponent, of 10 determines the mānitude of the number. Hence, the 1970 population of the United Statē hās a māgnitude of 8.

Occāsionally one may wish to rēcord à number with fewer than its usable numbèr of significānt figurēs. This technique is called rounding. It saves time and incrēásés comprēension when more than a few numbers àrē to be examined. The 1790 Nē England population may be rounded to $1,009,000$ persons (4 significant figures) or even $1,000,000$ persons (only 1 significant figure). Digits are always rounded to the

TABLE 1

Powers of 10

Powēr

Number
$10^{-\overline{6}} \equiv$ one millionth
$10^{-\overline{5}} \equiv$ one hundred thousandth
$10^{-4} \equiv$ one ten thousandth
$10^{-3} \equiv$ one thousandth
$10^{-2}=$ one hundredth
$10^{-1}=$ one tenth
$10^{0}=$ one
$10^{1}=$ ten
$10^{2}=$ one hundred
$10^{3} \equiv$ one thousand
$10^{4} \equiv$ ten thousand
$10^{5} \equiv$ one hundred thousand
$10^{6} \equiv$ one milion
$10^{9} \equiv$ ōné bílíion
$10^{12}=$ one trillion
nearest number, with $0,1,2,3$; and 4 rounded down, and $5,6,7,8$, and 9 rounded up. (Note the 5-5 split of the digits.) Thus:

$$
\begin{aligned}
& 19.1 \rightarrow 19 \\
& 17.7 \rightarrow 18 \\
& 16.5 \rightarrow 17 .
\end{aligned}
$$

Tukey, in his text Exploratory Data Analysis, suggests rounding numbers whose last digit is 5 to the nearest even number. Thus,

$$
\begin{aligned}
& 16.5 \rightarrow 16 \\
& 17.5 \rightarrow 18
\end{aligned}
$$

We recommend the former convention.
Occasionally it is convenient to reduce the number of significant figures by just dropping off the unnécessary digits. This is called cutting and is quickēr and eàsier thän rounding. In QMPM cutting is used in certain instancēs, ālthough when accuracy is desired rounding is generally preferrè. When thē decimāl portion of a number is dropped and only its integer component is recorded, the operation is called truncating. Rounding, cutting and truncating are discussed in chapter 1, pages 3-5, of Tukey (1977).

Section 2. Data Vectors-Observations, Subscripts, Indexing, Sumation
 consistent fashion. Simplé examplés of à batch are: i) Average family incomes for each of pítésburgh's $1 \overline{8} \overline{6}$ census tractes; 2) Population of New York State fór each year between 1900 and 1970; inciusive; 3) Distance traveled from home to school by each student in this class.

The expression data vector is used as a synonym for batch. \bar{A} spécifice datum, or batch value, is an observation or an element of the data vector. Hence, the batch of family incomes for Pittsburgh census tracts has 186 total observations.

It is convenient to have a mathematical representation for a batch of numbers and the observations in the batch: In QMPM a capital letter, such as X; is used to denote an entre batch of numbers. Each individual observation is identified by attaching a number; written below and on the right of this letter: For example; the first observation in the batch X is denoted X_{1}, the second observation is X_{2}; etc. The $i^{\text {th }}$ èlement is denoted X_{i}. Small numbers attached to X that identify different individual observations are callé subscripts. Thus; a batch of 10 numbers, denoted X, can be written $\bar{x}_{1}, \bar{x}_{2} ; \bar{x}_{3} ; \bar{X}_{4} ; \bar{X}_{5}^{-} ; \bar{x}_{6} ; \bar{x}_{7}, \bar{x}_{8}, \bar{x}_{9}$, and X_{10}. The subscripts are the integers running sequentiaily from 1 to 10. A more abbreviated representation of this batch ís $\bar{X}_{i} ; \overline{\mathbf{i}}=$
 is called the index, which in this exampie runs from i to io. The
 The capità létēr ' \bar{N} ' ís usé to stañ fōr the total number of observations in the batch.

Another special notation ís usé to denote the sum óf a batch of numbers: The notation $\begin{gathered}n \\ i=\sum_{k} \\ \sum_{i}\end{gathered}$ indícates that the sum $\bar{x}_{k}+\bar{X}_{k+1}+\bar{x}_{k+2}+\ldots+$ $X_{n-1} \bar{X}_{\mathrm{n}}$ is to be formed; $\mathrm{i}=\mathrm{k}$ indicates that the summation is to begin with the kth element of the data vectōr, and n indicatés that thé summation is to end with the nth element: The symbol ε, the Greek
capital letter sigma, by convention, denotes that a sumation is to be performed. The letter i is the index and the sumation ranges over the values k to n. Listed below are some rules for sumations:

1) $\quad \sum_{i=k}^{n} \bar{x}_{i}=\bar{x}_{k} \mp \bar{x}_{k+1} \mp \ldots \mp \bar{x}_{n-1} \mp \bar{x}_{n}$
2) $\quad \sum_{i=k}^{n} \quad \bar{x}_{i}^{2}=\bar{x}_{k}^{2}+x_{k+1}^{2}+\ldots+x_{n-1}^{2}+x_{n}^{2}$
3) $\quad \sum_{i=k}^{n} \quad \bar{a}=(n=k \mp 1) a$
4) $\sum_{i=k}^{n} a \dot{x}_{i}=a \quad \sum_{i=k}^{n} x_{i}$

For example, Table 2 is a batch of numbers corresponding to United States spacecraft launchings per year for the years 1957 to 1964.
[Table 2 here.]

Lè X denoté this batch: Thus; X_{1} corresponds to $1, X_{2}$ to $17, \ldots$, and \bar{x}_{8} to $\overline{8} 1 . S$ Suming the numbers $\mathfrak{i n} x$,

$$
\begin{aligned}
{ }_{i=1}^{8} \bar{x}_{1} & =\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}+\bar{x}_{4} \mp \bar{x}_{5}+\bar{x}_{6} \mp \bar{x}_{7} \mp \bar{x}_{8} \\
& =\overline{1}+\overline{17}+21+3 \overline{1}+4 \overline{9}+7 \overline{1}+\overline{1}+\overline{1}=34 \overline{1}=3
\end{aligned}
$$

Thus, a total of 342 spacecrafts was launchéd by the \mathcal{U}. S: between the years 1957 and 1964 , inciusive (íe., tnciuáng the two 'end' years; 1957 and 1964). As an exercise; you should verífy that $\sum_{i=1}^{\sum_{1}^{n}} X_{i}^{2} \equiv 20736$.

Chapter 14 of Rosenbach, ét.ác. (1963) and Appendix A óf Hays (1973) discuss summations in greater detaín, with some examples and problems.

TA BLE 2

U.S. Spacecraft Launchings

Yeā	Number of Launchings
1957	1
1958	17
1959	21
1960	31
1961	49
1962	71
1963	71
1964	81

64

Section 3. Data Sets-Yariables and Various Transformations
A single batch; or a collection of related batches that are to be analyzéd togethér, ís cailéd a data set Data analysis is concerned wíth exploring and understanding data séts. The fínid of statistics encompasses both data analysis añ the study of variables-especially random variables ō \bar{r} vaŕā̄̄les wíth associated probabilities. A variable is a quantity that may assume any one of a set of values. Population of census tracts, number of homicides in a police precinct, and yearly incomes for professors in a major university are examples of variables. A more 'formal' definition of a batch of data is a set of realizations of a particular variabie.

A variāle may be ciassified into one of two types depending on $\bar{t} \bar{h} \bar{e}$ values $\bar{i} \bar{t}$ may assume. A discrete variable may take one of a finite or countā̄y infinite sét of values. The number of students in this člass : ith yeariy incomes in excess of $\$ 15,000$ is a variable which may assume zay member of the finite set $\{0,1,2, \ldots, \bar{n}\}$, where $\overline{\bar{n}}$ is equal to The totai enroilment of this ciass: This variāie is discrete: All Guñs of objects or evence are discrete. A continuous variable may

 \because..
 be as tice ses percent or greater than one hundred percent, there are an infinise nuber of values within these bounds. For practical urpose, if a variatle es on only integer values, it is discreto;
otherwise, it is continuous: Section 4.1 of Blalock (1972) discusses discrete and continuous dātā.

Occasionally you will want to reexpress or transform a batch of numbers in the process of performing an analysis. The most common transformations involve raising numbers to various powers, a process called exponentiation, or taking logarithms of numbers. Below are some general rules for exponentiation:

$$
\begin{aligned}
& \text { 1. }\left(y^{n}\right)\left(y^{m}\right)-y^{n+m} \\
& \text { 2. }\left(y^{n}\right)^{m}=y^{n m} \\
& \text { 3. } y^{-n}=\frac{1}{y^{n}} \\
& \text { 4. } y^{\frac{1}{n}}=\sqrt[n]{y} \\
& \text { 5. } y^{0}=1 \\
& \text { 6. } y^{1}=y \\
& \text { 7. } y^{2}=y \cdot y
\end{aligned}
$$

A logarithm is an important but easily misunderstood concept. It is closely related to exponentiation. Any number may be represented in scientific notion es $p \cdot 10^{k}$, where $\bar{p} \bar{i} \overline{\mathrm{~s}} \overline{\mathrm{a}}$ number between 1 and 10 , and k is an integer power of 10 . $\overline{\mathrm{L}} \mathrm{t}$ is àso possible to represent any positive number, N, as 10^{y}, where y is any real number. When a number is represented in this fashion, y is cailed the logarithm of base 10 of the number N. Any positive number may be used in a base of a logarithm.

More formally, a logarithm of a base number \bar{b}, of a number N, is defined as that power to which b must be raised to obtain N. In mathematics, given any $\mathrm{N}>0$ and $b>0$, if $b^{y}=N$, then $\log _{b} N=y$. 'Log' is an
 For example, $5=10^{.69897}$; hence, $\log _{10} 5=.69897$. Also, $25=10^{1.39794}$ and
 logarithms are given bēlow:

1) Loḡs "comé" in vārious bāsēs̄; howēvēr, all loḡs to different bases diffēr only by a multiplicātive constant. Specificaliy, if a and b àré any 2 báses, then $\log _{a} \bar{N}=\log _{b} N \log _{a} b\left(\log _{a} b\right.$ is the multipiicative constant for this particular conversion). Because of this máthémātical fāct, āny bāse is éssentialiy as good as any other. Howēver, for vārious rēāons of convēniencē some bases are preferred in cértain contexts.
2) In QMPM logarithms to the bāse 10 āre used exclusively. These are writtén $\log _{10}$, or mērely log. This choice is prompted by the decimā number system. Base $\overline{10}$ logs are called common logs.
3) The second most useful base is the irrational number approximated by 2.71828... which is simply denoted by the letter ' e ' in honor of the mathematician Euler. He number e plays an important role in cā̀culus, as well as in other areas of mathematics. It occurs frequently in economics. Logs to the base e are writen loge or ln (for Napierian or Natural logs.)
4) $\log (1)=0$
5) $\log (0)$ is undefined, that is $\log (0)=-\infty$.
6) Log of a product is the sum of the logs;
$\log (P Q R)=\log P+\log Q+\log R$
7) Log of a quotient is the diffērence of the logs:

$$
\log (P / Q)=\log P=\log Q
$$

8) Log of a number to a power is found by multiplying the log of the numbēr by the powēr:

$$
\log \left(\mathrm{P}^{\mathrm{n}}\right)=\mathrm{n} \log \overline{\mathrm{P}}
$$

9) Log of a root of a number is found by dividing the log by the root:

$$
\log (n \cdot \sqrt{P})=\frac{1}{n} \log p
$$

All of these rules for the use of logs derive from the basic dēfinition of a logārithm ānd the rūes of exponentiation. Logs and éxponēntiātion are discussēd in Chaptēr 3 of Pāul and Haéussler (1973).

Séction 4. Percentagés

Familiārity with percēntages is éssential in a policy orientēd quāntitātive méthod̄ coursē. Māny dāta sets contain vāriablēs thāt àré originally récordēd as pērcentāges, and of ten analyses àe requested in terms of percentage change. A percentage is a portion of a number expressed in hundredths. The following mathematical statement is common: A is B percent of the number C. Since percents are expressed in hundredths, \bar{B} percent is equivalent to $B / 100$, and the above statement may be written $A \equiv(B / 100)(C)$.

There are three common situations encountered when using percentages:

1) A is unknown, B and C are known.
2) B is unknown, A and C are known
3) C is unknown, A and B are known.

Each of these situations is discussed in turn below.
The first problem is generally stated "s percent of C equals what number?" The answer is found by multiplying (B/100)xC. For example, 35 percent of 120 equal: $(35 / 100) \times 120=.35 \times 120 \equiv 42$.

The second problem is stated "A is what percent of \bar{C} ?" The answer is found by dividing A by C and multiplying the result by 100% i.e., If B is the correct answer, $B=(A / C) \times 100 \%$. For example, to determine what percent 36 is of 144 , calculate $B=(36 / 144) \times 100 \%=(.25) \times 100 \% \equiv 25 \%$.

The last problem occurs when the whole or base number C is unknown. It is usually stated "A is B percent of what number?" The answer is found by dividing A by (B/100); $C \equiv A /(B / 100)$. If A is 90 and B is 40%, then $C \equiv 90 /(40 / 100) \equiv 90 / .14 \equiv 225$, that is, 90 is 40% of 225 .

Chapter 3 of Bialock (1972) is a good reference for percentages, as is chapters 1-3 of Zeisel (1968).

Section 5. Plots and Graph Paper
In Unit 2 plots, or graphs, of pairs of observātions ārē māē. So that graphs can be read easily some conventions hāve bēn ēstāblishēd. The horizontal axis is called the \bar{x}-axis and the vertical axis is cālēd the y-axis. The x-axis is placed at the botom of the page, and the y-axis at the jeft side of the page. A point on the graph is represen= ted as (x,y). Figuse illustrates these prelimināy steps for à plot or a fiage of orojszry 3-aph paper.

The grapf parer in figure 1 has linear scales in noth the x and y dírections. inis is the type of graph paper that is used most in this course. Some rules for improving the appearance of a plot are given tolcw, īt brífy:

QMPM

i) Make plots "tall and thin" (y-axis longer than x-axis) or "short and wide" (y-axis shorter than x-axis)-whichever more effectively conveys your message.
tall and thin
short and wide
2) Use graph paper with light rulings for the units, heavy rulings every ten units, and fintermediate ruings every five units in between. Thé papēr in Figurē l hās thēsē intērmèdiatē linēs, which mākē à lārgē diffērencē in speed and accuracy (when plotting).
3) Bē clēvēr in āssigning numerical values to the básic unit-units othēr than 1,2 , or 5 timés a power of 10 are too awkwārd and tēdious.
4) In the finished version of the plot; do not clutter the plot by having too many values marked on the axes.

There are also types of graph paper with non-linear scales. Such paper can save a lot of time whe plotting logarithms of the observations. One example is semi-log paper, as seen in Figure 2, with a logarithmic scale for the y-axis. Note that on the log scale the physical distance from 10 to 100 equals the distance from 100 to 1000. This distortion or shrinkage is because $\log (10)$ is one unit away from
QMPM

$\log (100)$; i.e $\cdot \log (10)+1=\log (100)$, and $\log (100)$ is one unit away from log(1000): Another example of graph paper with non-linear scalēs is log-log paper which is illustraté in Figure 3. Here, both axes have logarithmic scaies. Bōth semi-iog and log-log graph papèrs will be of use when transforming batches by taking logarithms of the observations because you can go dírectìy fyom an observed value to its logarithm by simply finding the value on the graph paper's logarithmic scale: This operation makes $\bar{i} \bar{t}$ unnecessary to first calculate the logarithm using tables, a cálculator, or a computer.

Piots are very important in this course. You should reacquaint yoursél with the basics of plotting:

1) lāèiłing the axes
2) Iocating points in the $x-y$ plane using the abscissa, x-coordinate, and the ō ōdinate, y-coordinate, of each point.

Pani and Haeussiē (1973) discusses graphing in Chapter 3, Section 3 , and, in general, can serve as a useful référence volume.

Figure 3

References

Blalock; Hubert M. Social Statistics; Second Edition, McGraw-Hill Book Company, 1972.

Hays, William L. Statistics for the Social Sciences; Second Edition, Holt, Rinehart, and Winston, 1973.

Paul; Richard S. and Ernest F. Haeussler, Jr. Introductory Mathematical Analysis: For Students-of Business and-Economics; Reston Publishing Co., second edition, 1976.

Rosenbach, Joseph B. et.al., College Algebra with Trigonometry, Blaisdell Publishing Co., 1963.

Tukey; John W., Exploratory Data-Analysis, Addison-Wesley Publishing Cō. 1977.

Zeisel, Hans; Say it with Figures; fifth edition Revised, Harper and Row Publishers, 1968.

All data sets were taken from Statistical Abstract of the United States-1975 U.S: Department of Commerce, Bureau of the Census, Washington, D.C. 1975.

1. $\log _{10} 7.8 \mp \log _{10} 2.0-\log _{10} .5=$
2. $\log _{10}(9.1+.9)=$
3. $\log _{7} 1=$
4. $\left(5.6 \cdot \log _{10} 100\right) \cdot\left(.2 \cdot \log _{10} 1000\right)=$

Write the solutions to problems 5-8 in scientific notation.
5. $3.524 \cdot 10^{2}+.6476 \cdot 10^{3}=$
6. $\left(1.2 \cdot 10^{-4}\right) \doteqdot\left(.6 \cdot 10^{-6}\right)=$
7. 47569.532
a. to five significant digits =
b. to three significant digits $=$
8. $\left(34 \cdot 2 \log _{3} 27+52.9 \cdot \log _{8} 1\right) \cdot \log _{12} 144=$
9. $\frac{\log _{8} 56}{\log _{6} 56}=$
10. $\log _{7} 5 \cdot 108549=$
11. $5 / 6$ of $232 / 3$ is
12. 12 is what percent of 300 ?
13. Change the fraction $7 / \overline{8}$ to a percent.
14. Change. 1% to a decimal.
15. 38 is 20% of what number?
16. If a man has $\$ i 500$ in the bank and the annual interest rate $1 \bar{s} 5 \%$, how much will he have in the bank after one year?
17. Is the square root of 25 a rational or an irrational number?
18. Is $3 \sqrt{125}$ an integer?
19. Is $(-3)^{3}$ a positive real number?
20. Can an irrational number ever be an integer?
21. Which of these is 7•7•7•7?

4^{7}	7^{4}	4^{3}	14^{2}

22. $\left(5^{0}\right)\left(8^{1}\right)=$

0
23. $\left(11^{3}\right)\left(11^{5}\right)=$
24. $15^{5} \div 15^{2}=$
25. $\frac{1}{3^{-3}}=$
26. $(-3)=(-7)=$
27. $(-3)-(+3)+(+3)=$

QMPM
28. (-3) ${ }^{7}$ equals which one of the following?

| 3^{7} | -21 | -3^{7} | -3 | 3^{-7} |
| :--- | :--- | :--- | :--- | :--- | :--- |

29. Round the following values to integers.
a. $\quad 1093.91$
b. 0.8
c. $\sqrt{2}$
d. $\quad 33 . \overline{33}$
e. 0.2
f. -0.956
30. -.001
h. $-1 . \overline{77}$
31. The computer has generated calculations on your data that are significant to only 3 digits. Cut the following values to 3 significant digits.
a. $1.0992 \cdot 10^{4}$
b. $7.7109: 10^{-3}$
c. $8.0084 \cdot 10^{2}$
32. If you have negative values in à data batch can you make a logarithmic :ransformation on the raw data?
33. If you have fractional valuēs iñ àāa batch can you make a square root transformation on the raw data?
34. If $a>b$ and $b>c$, then which of the following statements is true?
$\overline{\mathbf{a}}>\overline{\mathrm{c}}$
$\bar{a}-b>c$
$\overline{\mathrm{a}} \mathrm{b}>\mathrm{bc}$
$a b c>0$
35. Arrange the following fractions in increasing order: $-2 / \overline{5},-1 / 2,1 / 5$.

78

Questions 35-39 perxain to the following data vector:

This data vector, X, contains the number of inspections in units of a hundred companies conducted by 24 regional federal Occupational Safety and Health Adininstration offices. Tet i denote the office and X_{1}, $X_{2} . X_{24}$ denote the number of inspections in hundreds conducted by each office.

3:. The actual number of inspections conducted by office X_{6} is
36. Office X_{4} is in Boston; office X_{23} is in seattle. How many more inspections did Boston conduct that Seattle?
37. Offices $X_{1}^{-}, X_{2} ; ., ., X_{6}$ are in the northeast: Offíces $\bar{X}_{7} ; \mathbf{X}_{8} ;: ;$; \bar{X}_{12} are in the southeast. Offices $X_{13}, X_{14}, ., ., X_{18}^{-}$are in the southwest. Offices $\bar{X}_{19} ; \overline{\mathbf{X}}_{20} ;$: : ; \bar{X}_{24} are $\mathbf{i n}$ the northwest.

What notation would you ufe to indicate the sum of all the inspections in the southw'st?

QMPM
38. What ís the total number of inspections that took place in the southeagt?
39. Are these data values discrete or continuous?

19
40. $\quad \Sigma 3=$
$1=10$
24
41. $\quad \sum 4 X_{1}=$ i=5
42. $x_{1}=1,3,5 \ldots \ldots, \ldots 11$
${ }^{4} \mathrm{X}_{1}{ }^{2}=$
$1=2$

For problems 43-46 state whether tie variable descrihed is discrete or continuous.
43. The proportion of blacks in each census tract in pittaburgh.
44. The number of persons living in pittsburgh that are biack.
45. The number of traffic fatalities in the U.S. in 1975:
46. The percentage of vehicle defect caused traffic fatalities in the U.S.

Questions 47-50 refer to the following graph.

47. List the coordinates for points $\bar{A}-\bar{E}$.
48. Order points $A-E$ by increasing values of the abscissa.
49. What ís the horizontai distance between points and E ?
50. What is the vertical distance between points C and E ?

Homework Solutions

Prerequisite Inventory Units 1 and 2

1. $\log _{10} 31.2$
2. 1
3. 0
4. 6.72
5. $1.000 \cdot 10^{3}$
6. $2.0 \cdot 10^{2}$
7. ब. $4.7569 \cdot 10^{4}$
b. $4.75 \cdot 10^{4}$
8. $4.08 \cdot 10^{2}$
9. $\log _{8} 6$
10. $\log _{7} 49$ or
11. $1913 / 18$ or $355 / 18$
12. 4%
13. 87.5%
14. . 001
15. 190
16. $\$ 1575$
17. rational
18. yes
19. no
20. no
21. 7^{4}
22. 8
23. 11^{8}
24. 15^{3}
25. 27
26. 4
27. - 3
28. -3^{7}
29. a. 1094
b. \mathbf{i}
c. \mathbf{i}
d. 33
è 0
f. -1
g. 0
h. -2
30. a. $1.09 \cdot 10^{4}$
b. $7.71: 10^{-3}$
c. $8.00 \cdot 10^{2}$
31. no
32. yes
33. a > c
34. $-1 / 2,-2 / 5,1 / 5$
35. 195
36. 7
82
XVI.I. 34

Module I
37. $\quad \sum_{i=13}^{18} \mathrm{X}_{1}$
38. 1110
39. discrete
40. 30
41. $4 \sum_{i=5}^{24} x_{i}$
42. 83
43. Continuous
44. Discrete
45. Discrete
46. Continuous
47. A $(25,105)$

B $(40,110)$
C $(20,120)$
D $(30,115)$
E (50,120)
48. C A D B E
49. 25 units
50. 0

Units 1 and 2

Reading Assignments
Readings should be complētē before the indicated lecture.

Texts:
Fair ley, William B. and Frederick Mostéliér, Statistics and Pubićc Policy, Reading, Mass: Addison-Wesiey Publishing Co, 1977.

Huff, Darrell, How to Lie with Statistics, New York: W.W. Norton \& Co., 1954.

McNeil, Donald R., Interactive Data Analysis, New York: John Wiley \& Sons, 1977.
'Profiles in School Support;" prepared for the National Center for Education Statistics by Eugene P. McLoone, Washington, D.C.: U.S. Government Printing Office; 1974.

Tanur; Judith; et al. Staristics: A Guide to the Unknown, San Francisco: Holden- Say; Inc.; 1972.

Tufte, Edward R., Data itajesis for Politics and Policy, Englewood Citis: ; N.J.: Prentice-Hail; 1974.

Tukey, John W., Exploratory Data Analysis, Reading, Mass.: AdisonWesley, 1977:

Tukey, John W: and M: B: Wìk, Data Analysis and Statistics: An Exposit̄ory Overview, AFIPS Conference Proceedings, volume 29, 1966; P户ि. 695-709.

Wallis, W. A. \& H. V. Roberts, Statistics: A New Approph, Glencoé, ILL.: Free Press, 1956.

QMPM

Lecture 1-O. Iñroduction to QMPM and Unit 1

General Introduction to Quantitative Methods for Public Management and Specific Introduction to Unit 1 , Analysis of Single Batches of Data

Lécture Content:

1. Discuss purpose and organization of course, and the nature of data analysis
2. Intreduction to the cbjecsives, problem, sad notation of Unit 1

Main Topics:

1. Introduction to QMPM--Detailed structure
2. Introduction to Uiit i

Topic 1: Introduction to QMPM--Detailed structure
I. Nature of Data Analysis: Numerical detective work What doēs a dāta analyst do?

1. Tāke apart dátä to find structure: $\mathrm{D}_{\mathrm{a}} \ldots=$ Signal (Fit) + Noise (Residual)
2. Familiarity with various forms of data sets and ways of "handiling" them
3. Analytical methods to take data apart
4. Exploration preceding confirmation--Detective work (Investigative vs. Judicial evaluative process)
5. Iterative and Interactive process-uses data às guide tó procedure
T. Structure of QMPM
6. Rationale: Analysis for decision making Problems facing data analysts
a. Public managers need to make effective decisions
b. Mist be able to process data, present results to nonquantitative audiences
c. Relevant data usually quantitati: \rightarrow " "messy" or "dirty" (measurement error, NA . Hes
d. Analyses are usually unplanned, fuit hoc, second hand
e. Implication-need operational analytic skills that can handle data problems and change data into information
7. Objective: Provide these necessary skills Students learn to:
a. Gather and prepare data
b. Analyze data to uncover structure and evaluate the analysis
c. Present data and interpret analytic results for improved communication
8. Philosophy: Preparation for practice QMPM's emphasis:
a. Quantitative--numeric data, relating to quantities or measures
b. Real data-empirical, based on real-life observation or experiment
c. Polify relevant data--data used in making decisions
d. Graphics--visual displays or pictures
é. Rēsís $\bar{t} a n \bar{t}$ and robust techniquēs=unaffected by deviant values or erroneous āsumptions
\bar{f}. Data analytic=-not just statistical; models for data
g. Computer orientation--exploits special user-oriented computing system
iff. $\mathrm{C}_{\text {, }}$ alization and organization of course: Elaborate stroure, requires cooperatior bétwēn students and instructinnà staff
9. 自nstructors-Ident:fy, officés, office hi rss
10. Module/Unit design
11. introductory lectures-precede substantive learning unit's
12. Prérequísíte inventories-éstāblish bãse upon which new skilis are built
13. Réerences and texts-describē
14. Computer system--location, staff-if used
15. Vídeo tapes-location, s̄tāf $\bar{f}==i f$ used
16. Databank--documentation, staff=if used
17. Calcuiators--promote purcháse
18. Homework--f \bar{r} equency, schedule
19. Workshops-i per week, flexible rolé in course
20. Calendar

Topic 2. Introduction to Unit l, Anālysis of Singlē Batchēs of Data
I. Introduction to the objectivē of Unit 1

1. Questions to be answered in Unit 1
a. What is a batch of numbers?

A set of similar values obtained in some consistent fashion (from Prerequisiste Inventory, Module I)
b. What analyses can be done on a single batch? What can we say about a batch?
2. Skills to be mastered in Unit $\overline{1}$
a. Percéiving and recognizing a batch
b: Organizing a barch to facioitate presentation, comprehension, and analysis
c. Condensirig a batch to facíiftate summarization
d. Transformations to promote symetry
e. Definition and recugni ion of weil-behaved batches
II. Introduction to the problems of Unit i

1. What is a batch? Look at an example.
a. Similar numbers--counts of persons in census tract scale
 in Pittsburgh
b. Consistent fearure--data coliected in 1970 census enumeration of city of Pittsburgh (Note trailing zeros and tract sequence arrangement; discuss notion of "census tract" and source of census datá
Example: 1970 populations, in thousands of persons (comment on units)

That can we say about a batch? What are its features? How can we summarize it?
a. Minimum value-how small is the smailest value of the batch?

89
b. Maximum value--how large is the largest value of the batch?
c. Typical value-what is the "average" value of the batch?
d. Variability--how spread out is the batch?
e. Uniformity--how clustered is the batch?
f. Shape-how symmetric is the batch?
3. Example: jopulation data again
a. Minimum value--334 persons, tract 185
b. Maximum value--79i0 persons, tract 95
c. Cannot answer remaining questions example: Number of blacks in each of the census f Pittsburgh in 1970

Minimum value--0 Biacks; tracts $\ddagger 05$, 129, 146, 171, 176, 177; 185
b. Maximum value--4611 Blacks; tract 74
c. Cannot answer remaining questions; buc note large numbe of small values
5. Conciusior.
a. Need methods to orgañize data
b. Need tools to sumarize imporant features
c. Methods should be easily performed
d. Summaries shouì̄ b̄e readily comprehended
III. Introduction to Notation of Unit 1
(See Prerequisite Inventory, Module I, for reference text)

1. Conventions
a. Capital letter ("Xi) denotes entire single batch of values
b. Individual values identified by single subscripts
2. Examplē: Pitts̄burgh pof jlātion
a. Lēt $\bar{X}=$ Population of Pittsburgh census tracts in 1970
b. Lēt $X_{1}=$ Population of tract $1=972$ persons

Let $\mathrm{X}_{2}=$ Population of tract $2=4082$ perso:

Let $X_{185}=$ Population of tract $185=334$ persons
(Note arbitrariness of assignment of tract numbers)
c. In general, there are n tracts (in this case, $n=185$)
d. Thus $X_{n}=X_{185}=334$ persons

Lecture 1-0
Transparency Presentation Guide

Lecture Outline Location	Transparency \qquad	Transparency Description
Topic 2		
$\overline{\text { Section I }}$		
$1 . a$	$1\}_{* *}$	Definition of Batch of Data
2	$2\}$	Topics for Unit 1
Section II		
1:b	3	1970 Populations of Pittsburgh Census Tracts
1:b	4	1970 Poriciavions; in Thousands of Persons
2	5	Questions to be Answered for Single Batches
3	6	1970 Populations, Maximum \& Minimum Indicated
4	7	1970 Black Populations of Pittsburgh Census Tracts; Maximum \& Minimum Indicated
Sec on III		
1-2	8	Conventions \& Example of Notation

[^1]BATCH

A batch of data is a set of similar observations obtained in some consistent fashion.

In Unit 1, we will learn how to analyze single batches of data -batches with only one particular feature.

Topics for Unit 1

1. Perceiving and Recognizing à Batch
2. Organizing aa Batch Using Analytic Tools
3. Condensing a Batch for Description
4. Numerical and Graphical Summaries
5. Determining Transformations for a Batch
6. Defining à Well-Behaved Batch
[3]

1970 Dopulations of Pitthingh Census Tracers

1970 Populations of Pillisburgh Cansus Tracts Data in thousande of Persons

0.972	4.682	1.972	0.391			
3.062	2.919	2.424	6.887	0.631	H.735	1.938
2.085	2.973	3.712	2.505	1.929 1.919	3.689	2.437
4.187	1.65	1.645	3.629	1.919 0.45	3.294	0.449 2.44
1.867	1.359	2.855	1.876	2.915	1.485	2.4478
2.471	0.728	1.205	2. 382	3.122	1.815	1.41
6.765	2.776	2.135	1.349	3.628	4.415	3.153
5.747	2.135	1:33	4.73	2.942	3.469	4.095
2.155	4.247	1.472	3.832	1.452	3.378	1.971
1.253	2. 316	3.692	4.86	3.945	2.682	9.948
2.744 5.269	3.226	3.769	4.858	4.014	1.645	5.3
5.269 5.319	2.979	5.148	$3.26 \overline{8}$	3.133	4.92-	6.063
5.319 1.521	5.435	1.212	2.041	2.868	1.577	2.034
1.521	4.615	3.994	7.91	3.188	4.392	6.i58
3.156	3.578	2.486	5.88	3.962	3.752	1.884
4.719	3.509	6.796	5.424	3.82	2.819	1.418
0.996	2.607	2.396	S.371	2.63	3.765	7. 12.15
2.297	0.335	6.235	3.121	0.791	6.683 1.558	2.658
2.67	1.227	1.159	2.579	0.791	1.558	1.343
1.338	2.779	0.345	4.327	2.987	0.588 2.254	1.142 2.569
1.792	2.932	2.125	i. 056	2.325	1.963	2.569 0.719
3.103	2.487	1.193	3.291	1.084	4.561	3.689
1.289	3.853	3.985	2.857	4.437	1.399	2.214
3.812	2.612	1.64	3.921	0.992	1.986	3.425
6.242	5.818	6.527	0.955	5.3	1.289	2.829
1.297	3.413	6. 334			1.289	2.829

$1-0$

95

Questions te be Answered for Single Batches

1- Minimum Data Value
2-Maximum Data Glue
3- Typical Data Value
4- Variability of the Data Values
5- Uniformity
6- Shape

1970 Poutatiens of Dikburgh Ceesses Duecta

972	4082.	1972.	391	631.	$\begin{array}{r} 735 . \\ 3639 . \end{array}$	$\begin{aligned} & 1938: \\ & 2437 . \end{aligned}$
3062.	2919	2424.	68 B7.	729.		2437.
2085.	2973.	$3712{ }^{\circ}$.	2505.	1919.	1645.	2447.
4187.	1650.	1645.	3629.	2915.	1645.	2388.
1867.	1359.	2855.	1876.	$2912{ }^{\text {2 }}$.	1019:	1410.
2471.	728.	12050	2382.	31628°.	4415.	3153.
765.	2776.	2135.	1349.	2942.	3469.	4095.
5747.	2135.	1330.	3832.	2942.	3378.	1971.
2155.	4247 .	1472.	$386{ }^{\text {a }}$.	3945.	2682.	848.
1253.	2316.	3892.	4858 :	4014.	1645.	5348.
2744	3228.	3769.	4858.	3133:	4526.	6003.
5269.	2979:	5148.	$3268{ }^{\circ}$	2869°	1577.	2084.
5319.	5435.	1212.	-20485	3188.	4392 :	4758.
1521.	4615.	3994.	5280-	3962°.	3752.	1884.
1985.	5203.	2394.	1424.	3820.	2019.	1418.
3156.	3578.	2398.	5371.	5630°.	3765.	7425.
4719	3569.	6795.	1878.	2574.	663.	2658.
996.	2607.	2396.	1878. 3121.	791.	1558.	1343.
2297.	335.	6235.	2129.	569 :	-588.	442.
2678	1227.	1159.	$2579{ }^{\circ}$	2987.	2254.	2569.
3338.	2779.	345.	$1356{ }^{\circ}$	2325.	1963 :	719.
1792:	2932.	2125.	1556.	1044.	4561.	3609
3103.	2487*	1193.	2859.	4437.	1399.	2144.
1289.	3853.	3985.	3921°	992.	1906.	3425
3812.	2612.	1648.	9955.	5300.	1289.	2829
6242.	5818.	6527.	955.			
3297.	3413.	334.				

1970 blect Populations of Binsturgh Cenow Trimets Reluximum of and Xinianum

98
XVI.1. 50

Let X denote
the single batch
of total populations of each
of the 185 census tracts in PiNsburyh in 1970: X = population of the Pilkburgh Census Tract.

Identifying Individual wheorvetroose
$X_{1}=$ population of first census tract $=072$
$x_{2}=$ population of seed census tret $=4082$
\vdots
$X_{\text {iss }}=$ population of ms ${ }^{2 H}$ census tract $=234$
$x_{i}=$ population at soar arbitrary ios ed eesosus tract

Lecture 1-1. Organization for Anālysis

Organization for Analysis: The Use of Numéric and Graphic Methods for

 Analyticai Organization of Single Batchés
Lecture content:

1. Discuss methods for recording and presenting a batch of data in an organized manner.
2. Show how such tools convey various batch characteristics.

Main Topics:

1. Methods for organizing a batch
2. Questions to ase of a batch

Tools Introduced:

1. Sorted batch
2. Histogram
3. Stem-and-Leaf Display

Topic 1. Methods for Organizing a Batch

I. Basic issue: Organization of data

1. Arbitrary-the manner in which data are usually gathered, recorded or transmitted
a. At the data collector's discretion--i.ē., a matter of convenience
b. Contextually defined--e.g., stations on transit line
c. May depend on data gathering procedure--e.g., census
d. Obscures behavior of batch values
e. Makes summarization and analysis difficult
2. Analytical--the manner in which we desire to arrange data
a. Consistent
b. Context free
c. Reliable
d. Conveys behavior of batch values: shape, spread, tocation; outliers
e. Simplifies continued analysis of the batch
II. Problem: Analyst often must use data which come arbitrarily organized
3. Arbitrarily organized data are unwieldy
4. Such dáta do not permít ready description
5. Such data do not pèrmít conclusions to be drawn about batch behavior--cannot get a "feel" for the batch
iif. Solution: Simpie and understandable tools for analytical organization
6. Símplest method-Sorted batch
7. Ciassical method=-Histogram
8. Exploratory method--Stem-and-Leaf display

IV. Methods

Oniy anaiyticai organization of data is discuseed in this 1ecture. The techniques covered can be applied to all types of batches of data. They are visual displays that are easily appreciated cognitively and help the data analyst by addressing the problem of what to examine in a batch. Universal rules fōr reíā̄̄e and quick construction are presented.

1. Sorted batch: a simple organization, àn ärrā of values, ordered from smallest to largest
a. Example shows a sorted batch: 1970 populations of Pittsburgh census trácts
b. Features
i. Simple idea
ii. Retains information on individual values
iii. Operationally difficult to construct
c. Analytic qualities
i. Largest and smallest values identifiable
ii. Ability to locate order statistics (explain
"counting in")
d. Procedure: arrange data in increasing order
e. Sorted batch constructed by computer:

In the session introducing CMU-DAP system.
2. Histceram: A bar graph which visually presents some ōf the information in a batch
à. Examplé: Histogram of 1970 populations of Pittsburgh ceñēus tracts
b. Fēāurē̄̄
i. Rēāsonably interpretable
ii. Common technique
iii. Formal definition

$$
102
$$

XVI:I:54
iv. Loses information on individual values
v. Operationaliy difficult to construct
c. Analytic qualities

1. Shape-separation, symmetry, irregularity, and clustering of values
ii: Spread--variation of values
d. Procedure:
(Draw histogram of 1970 populations of Pittsburgh census tracts on blackboard, explaining each step.)
i. Draw vertical (y) and horizontāl (x) àxes on a sheet of ordinary grāph papér
ii. On horizontāl axis̄ mārk off smāllēst dātā vāluē and highest dāta vālue in batch, using the scale of the axis; in this càse, 0.3 and 7.9 thousand
iii. Divide this intervā into the dēsired number of "bins" of equā sizè for displāy. It māy bé nécessary to round the smallēst value down and the lāgèst value up to obtān a convenient width for ēach subintērvāl. For thēsē dātā; use 8 bins of width 1000.
iv. Rēcord number of dāta vāluēs fālling into eāch bin. This information is needed to detérmine height of each bār.
v. Mārk off verticāl axis to corréspond to number of dāta vāluēs pēr bin
vi. Drāw in bārēs
vii. Can also have intervals of unequal size, and can combine intervals to produce a "squeezed" version or break up intervals to produce a "stretched" vèision.
è. Histoḡam constructed by computer:
In sēssion introducing the CMU-DAP system

$$
\therefore \quad 183 . \mathrm{I} .55
$$

3. Stem-and-Leaf display: An easy and versatile method of organizing a batch into roughly numerical order.
a. Example: Stem-and-Leaf of 1970 Pittsburgh census tract populations in thousands of persons
b. Features
i. "Face valídity"
ii. Retains information on individual data values (display and storage versions)

苝五. Many versions--fiexibie
iv: No formal rules for "correct" version
v. Operationally easy to construct
c. Analytic qualitías
i. Largest and smallest data values
iif Location of order statistics
iii: Shape
iv. Spread
d. Procedure:
(Work through an example on the blackboard.)
i. Choose a convenient unit, or power of ten, for the display
if: Every data value in the batch is cut to a whole muitiple of the uñit
ifi. Séparate each value for the display into a stem and a 1eaf
iv: Find the largest and smallest stems
v. Write down these stems and all the intervening stems in a vertical column
vi. Use ásterisks (${ }^{(}$) tō indicate the number of digits represented in a leaf
ví. Draw a vertical line
vií. Place the leaves on the iñe corresponding to the correct sicem
e. Another examplé:

Net migration for Pennsyivania counties in percent óf population from 1970 to 1974
(Do Stem=and=1eaf of batch on blackboard)
(Set aside the high outifers)
(Unit $=0.1 \%$, single stems)

1. The nutiying counties have been set asidée-the caus of their large increase in population should be investigated. Countiēs are: Monrōe; ?ike, Wayne, Wyoming
1i. If the display appears too "squēzed", we can inciease the number of lines per stem from ito ? or 5
f. Another example:
 each stem now has 2 ines.
Use "夫" and "." to spiit the stem for leaves 0-4 and 5-9.
2. The first line, lābelled $*$, holds leaves 0-4.
3. The second line, lābelled, , holds leaves 5-9
g. Another example:

Stemand-leaf for the Pittsburgh populations where each stem now has 5 lines.
i. Linē lábēlled * holds leaves $\overline{0}=\overline{1}$
íi: Liñe $\overline{1}$ ābelled t holds leaves $\overline{2}=\overline{3}$ ("two" and "three"')
ííi. Line labēlled f holds leaves 4=5 ("four" and ㄷ "Eive")
iv. Line labelled s holds leaves 6-7 ("six" and "seven")
v. Line labelled . holds leaves 8-9
vil. If a display appears too "stretched", change the unit by decreasing it, and decrease the number of stems per line
(Compare net migration stem-and-leaf displays on two different scālēs.)
vil. Choose the "best" display by controlling the maximum number of leaves per line

Rough rule: max leāvēs $/$ inc $=10 \log _{10} N$
h. Stem-and-Leaf display constructed by computer:

In the session introducing the CMU-DAP computing system.

Topic 2: Questions to Āsk of a Batch
I. Basic Issué: Once organizēd, whàt cān wē lēarn from a single batch?
II. Try to answer the following questions which relate to the batch values:

1: Do the values ciuster or are they uniformly spread?
2: Are there any deviant values; outliers?
3. Is the batch symetrical or asymmetrical?

4- Are the values widely spread out?
5. Are there any separations in the display?
6. What are the order statistics of the batch?
7. Where is the "center" of the batch?
III. Methods related to questions:

Stem-and-leaf displays permit us to answer all of these questions. Histograms do not answer (2); (6) or (7) completely, since individual data values cannot be identified. Sorted batch does not answer (3), (4) or (7) and (2) and (5) are difficult to answer.
(Discuss appearance of each of the next 2 slides; answer questions)
(Suggest the use of answers to questions in il as attempts to sumarize batch: Summary is facilitated by analytically organizing the batch.)

$$
107
$$

Lécture 1-1
Trānspāency Presentation Guide

Lecture Outline Locātion	Transparency \qquad	Trānsparency Description
Beginning	1	Titlē, Content, and Topics of lecture
$\frac{\text { Topic } 1}{\text { Section III }}$		
1	2	Sortèd Bātch
2	3	Histogram
3	4	Stem-and-Leaf Display
Section IV ${ }_{1}$ 2 Sorted Batch		
2	3	Histogram
3	4	Stem-and-Leaf Display
$3 . \mathrm{e}$	5	Net migrations_for Pennsylvania Counties, 1970-74
3.1	6	Stem-and-Leaf Display of Pittsburgh Populations
3.8	7	Stem-and-Leaf Display of Pittsburgh Populations
3.8.vi	$8\}$	Stem-and-Leaf Display of Net Migrations, Unit $=0.1 \%$
$3.8 . \mathrm{vi}$	9)	Stém-and-Leáa Display of Net Migrātions, Unit = $\mathbf{1 \%}$
Topic 2		
Section I	10	Quēstions for Single Batches
Section III	$11\}$	Stèm-and=Leàf Display for Averrage Educātion
		Stēm-and-Lēā Displāy for Percēntage in Poverty 108

xvī. 1.60

Lecture 1-1
Organization for Analysis:
The use of Numeric and Graphic tools for organizing batches.

Lecture Content:
Methods for presenting a batch of data in an organized manner to convey a variety of characterotives of the batch, such as: a typical value, shape; and outliers.

Main Topics:

1) Methods for organizing a batch.
2) Questions to oik of a batch.

Simplest methodA Sorted Batch

334:	335.	345.	391.	442.	449:	
484.	569.	588.	683°	631.	719.	753.
729.	735 :	765 :	791.	848.	7959.	7272.
-992.	996:	1019.	1044.	1050.	$1456{ }^{\circ}$	1159.
!1930.	1295.	1212.	1227.	1253:	1289°	1289.
1336.	1343.	1349.	1359.	1399.	1485.	1410.
1418.	1424.	1452:	1472.	1521.	1558.	1577.
1876.	1885.	1645.	1645.	1792.	1867.	$187 \overline{0}$.
1972.	1985.	1986\%	1919.	1938.	1963.	1071.
2125.	2135.	2135.	2144.	2155.	$2184{ }^{\circ}$	2885.
2316.	2325.	2382.	$2388{ }^{\text {2 }}$	2396.	2254.	2297.
2437.	2417.	2471.	2487%	2595.	2398.	2424.
2579.	2602.	2687.	2612.	2658.	2679°.	2744:
2776:	2779.	2829.	2855.	2857.	2915.	2919.
2932:	2942.	2973.	$2979{ }^{\circ}$	2987.	3062.	39192.
3103.	3121.	3122:	3133.	3153.	3156.	$3188{ }^{\circ}$
3228.	3268.	3291.	3294.	3297.	3338.	3378.
3413.	3425.	3469.	3592.	$3571{ }^{\text {\% }}$	$3689^{\circ} \mathrm{C}$	3628.
3629.	3689.	3712:	3752.	3765.	3769.	$3812{ }^{\circ}$
3828.	3832.	3853:	3985.	3921.	$3945{ }^{\text {\% }}$	$3962{ }^{\circ}$
$3494{ }^{\circ}$	4014.	4860.	4018.	4095 .	4107\%	4247.
1327.	4392.	4415.	4437.	4526.	4561.	4615.
1719.	4730 :	4758.	4858.	5141 .	523.	5269.
3818.	5380.	5319.	5371.	5435.	5636.	5747.
5487.	7425.	791.	6235.	6242.	6527.	679.

Classical Method:
Histogram

1970 Populations of Ph. Census Tracts

Explosatory Metteod:
1 Stem-andikef Oisplay

For: Pjh. Populations of Censu's Tracts Unit $=100$ persons (values cut)

$$
11 \overline{2}
$$

Net Nigntion, in Aucoent, of Pyotetion of Penns. axinties, M70 1974.

County Oin Hetran	County	\% met Anration	County	\% Uet Aigration
Alams 60	EHK	- 0^{6}	montour	-1.0
Allopheny -6.1	Crie	0.1	Northemptan	2.7
Armatrong -0.6	Fayctre	0	uptaumberland	1.4
Buaver 7.3	Smot	-0. 8	A	6.4
Bedford : 0.3	Ariotion	08	Phitodelpan	-6.8
Gerks 1.6	Fultan	3.5	pife	\%. 5
Stair tos	creepe	1.7	Potter	0.8
Enadford -0.2	mentringoon	1.1	Sehayltill	0.8
Bucks 3.7	tudiana	23	sayder	4.6
Butfer 32	Jufferson	6.1	Sommerset	0
Cimbria - -3	Stuosiata	4.8	Bullican	-3.3
Cameren -K.	Leckracman	-0. 1	Suspuchan ona	2.0
carbon 30	Lincester	2.5	rfaga	3.1
Centre 3.2	purave	-1.2	Union	5.1
Chester 0.9	tebeimen	2.1	Venango	0.8
clarion 3.3	Letigh	1.8	warren	-2.7
Clearfiald 0.9	ungerne	1.9	washingters	0
clinton $\quad 0.1$	4ating	0.4	Wayne	8.4
Cotumbla 4.	preap	-2.9	textmonetend	7.2
Crawford 22		-0.4	byoming	13.4
Camberland 3.2	Afflin	-3.2	York	1.4
Dmphin -0.4	thare	13.8		
Deleware -38	restpomery	-0.2		

```
(UNIT = 10%2)
    || | |3334444
    8. 1 5566777777899999
    4* 1 60001122222233333444444
    1. ! 5556656788689999999
    24* 1 00080111112233333344444
    2.- 5555666667778889999999
    3* 1 101111111122222233444
    3.- 1 5566667777888899999
    4* 1 0085123344
    4. 1 5567778
    5m 1 12233334
    5. 1 6788
    6#1 122
    6. 1 578
    HI 1 7425: 7910
```

114

Stem-and-Leaf Display
for Pitts burgh Populations

XVI.I. 67

ERIC

QMPM

Stem-and-Leaf Display [घु] of Pennsyluania Countics Net Migration

$\begin{array}{lllll}\text { HII } & 13.8 & 18.5 & 8.4 & 13.4\end{array}$

Stem-and-Leaf Display [9]
of Pennsylvañia Counties' Net Magration $u_{\text {nit }}=1 \%$ (väluès cut)

$$
1-1
$$

XVI.I. 68

Questions for Single Batches

1. Do the values cluster or are they uniform?
2. Are there any deviant values, outliers?
3. Is the batch symmetrical or asymmetrical?
4. Are the values widely spread out?
5. Are there any separations?
6. What are the order statistics?
7. Where is the center?

QMPM

 below the Poverty Level in Agh. Cerses Tracto

Lecture 1-2. Condensation for Description

Condensation for Description: The Use of Numeric and Graphic Methods (1) to Describe the Information Contained in Single Batches

Lecture Content:

1. Discuss methods for both condensing a batch and presenting the condensed "summaries"
2. Show how such tools effectively describe the batch

Main Topics:

1. Condensing à bātch to a small set of numbers
2. Adequacy of these sumaries to describe a batch

Tools Introduced:

1. 5-number summäry
2. Simple schematic plot
3. Expanded number sumary and schematic plot

Topic 1: Condensining a Batch tō à smàii Set of Numbers and à Graphic
I. Basic issue: Condensátion of a batch

1. Condēnsation ís "secondorder" sumaríation-less information is retained than órganization téchniquēs
à. Stem-and-ieá display and histogram give too much detail
b. Seek severai easily obtained numbers which convey some of the detail of the organization tools
c. More expedient to "describe" the batch with these "number summaries" than with the entire stem-and-leaf
d. Schematic plots are efficient mnemonic devices
2. Condensation causes áas in information except in special instances when the batch can be reconstructed with knowledge of oniy a few values, i.e. when the batch is wēll-behaved
II. Problem: Organization tools are not convenient summaries of a batch
3. Usuāly, organized batch retains too much information. Less may be more useful
4. Condense batch to quantify answers to these questions:
\bar{a}. What is a typical value of the batch?
b. How much variation is present in the values of the batch?
5. Condensations must be easy to obtain; effective in their sumarization, readily interpreted, communicated, and remembered
III. Solutions: Simple and expanded numeric and graphic summaries of a batch
6. Simple numerical method--5-number summary
7. Simple graphical method--Simple Schematic ('box-andwhisker") plot

$$
120
$$

XVI.I. 72
3. Expanded methods--Expanded number sumary and schematic plot
IV. Methods: Numeric and Graphic presentations of order statistice

1. Notion of order, deprhs, folding; and "counting in"
(Note: Distinguish between order statistics and actual data values)
2. 5-number sumary: Simple condensation
a. Example: shows a 5-number summary of 1970 populations of Pittsburgh census tracts
b. Features
i. Displays of some order statistics-median, max, miñ hinges (quartiles)
ii. Adequately conveys characteristics of most batches
iii. Computable, with some difficulty, from sorted batch
iv. Easily computed from stem-and=leaf
v. Cannot be computed from histogram
vi: Does not give sufficient detail for a large or asymmetric batch
c̄. Añalytic qualities
i. Largest and smallest data values ("extremes") contained in summary
ii. Median, or midale vālue of bàtch, included às a typical value
iii. Hinges (quarters), or medians of the two halvēs of batch, included
d. Procedure
3. Add à column of cumulative countss, or "depths", to a stem-and-lēā dis̄play of the batch

121

XVI.I.73
ii. Depths should $b \in$ cumulated from first Ine down (3) and from last line up; toward the middle
ifi. Stop cumulating when cumulative counts in each direction are roughly equal
fv. First number in sumary is smallest value in batch; minimum, which has a depth of 1. Label the minimum "E"
v. Last number in sumary is largest value in batch, maximum, which has a depth of 1 . Also label the maximum " E "
vi. Third number in sumary is middle value in bātch, median. Which has a depth of (N+1)/2. Mēdiān is defined as single middle value of batch (N odd) or mean of two middle values (N even), and is 1abelled "M"
vii. Second and fourth numbers in summary are hinges, medians of the two halves of batch. Hinges have a depth of (Depth of $M \mp 1) / 2$, and are labelled "H"
viif. Arrange the 5 -number sumary vertically with 3 (5) columns:

> Coiumn $1=$ Depths Coiumn $2=$ Eetter Abbreviations (E, \bar{H}, M) Coiumn $3=$ Values
ix: Tukey calls 5-number sumary a "letter value disp̄iay"
é. Another "view": Information contained in 5-number (6) summary
f. Useful measure of "spread" of bātch is midsprēad. (7) Computable from number summary
Midspread $=$ Upper Hinge (UH) Lower Hinge (LH)
variability of batch varies directly with midspread
£1. 25% of batch is lēss thân LH, 25% gréater thàn
UH Hence 50% of batch lies between hinges
122

> ifí. Median (M) is a toical or "central" value of the batch. Half of the batch is less thān M, and half is greater. We will use the median as the "average" value of the bātch
> iv. Range of the bātch is also a mēasure of spread Range $=$ Upper Extreme = Lower Extreme
f. Another example: Symmètic bātch
i. Symetric batch has mediān lȳng hālfwāy between (8) the hinges, halfway betwēen extrēmès, ànd hàlfway between any other "folds"
ii. Any batch where median is not exactly halfway between the hinges or extremes is not symmetric-it is asymmetric
g. Another example: Median incomes for families and unrelated individuals in Pittsburgh census tracts; 1970
(Compute 5-number summary from sorted batch)
(Compute 5-number sumary from stem-and-leaf of batch)
(Try to compute 5-number summary from histogram of batch)
h. 5-number summary constructed on computer:

In the session introducing the CMU-DAP computing system
2. Simple Schematic Plot: Graphical presentation of 5-number summary (Tukey calls this tool a "box-and-whisker" plot)
a. Example: Schematic plot for median incomes for Pittsburgh census tracts in 1970
b. Features
i. Extremely useful in discussing appēarancē of batch
ii. Some attributes of batches, such as symmetry, best conveyed by this graphicā tool
iii. May be difficult to rēcover the exact values of the 5 -number sumary from the plot

123
XVI.I.75
c. Analytic Qualities
i. Made on ordinary graph paper

1i. y-axis represents values in batch
iii. Extremes, hinges, and median c̄ieariy marked
iv. Shape and spread of batch easily seen
d. Procedure
i. Draw a box that stretches from hinge to hinge, crossing with a bar at the median
£i. Draw a ine, or "whisker", from the box to each extreme
iii. Examine length of box for information on spread of batch
iv. Examine location of bar within box, and box between extremes for information on symmetry of batch
v. Examine length of whiskers for information on outliers
e. Another example: Pittsburgh populations with the (12) outliers indicated

Median lies halfway between hinges; but large number of outilers makes the batch asymmetric
f. Another example: Schematic plot of net migrations (13) of Pennsylvania counties; 1970-1974

Schematic plōs need not be made verticaily on graph paper: Plots can be drawn horizontally on regular papēr:
3. Expanded number sumaries and schematic plots-Adequate condensation for large batches ($\mathrm{N} \geqslant 100$)
à. Examplé: Schematic piot of Pittsburgh median incomes (14)

$$
124
$$

XVI.I.76

b. Features

1. Emphāsizes the outliers in the batch
ii. Very effective in condensing the batch
iii. Expanded summāy best prēsented as a schematic plot
c. Analytic Quālities
i. Défine fencēs beyond the hinges to identify outliers
ii. Outliers suitably indicated on the schematic plot
iii. Shape, spread, and outliers of batch easily seen
d. Procedure
2. Introduce further descriptive numbers

Step $=1.5 \times$ Midspread Inner fence (f) $=$ Hinge $+/-1$ step Outer fence $(F)=$ Hinge $+/-2$ steps Adjacent values are data values closest to, but still inside the inner fences
ii. Data values between the inner and outer fences are "outside" and are marked on the plot with circles
iii. Data values beyond the outer fence are "fā̄ out" and are marked on the plot with squares
iv. Whiskers on the plot should be dashed, ending with dáshēd crossisbās at the adjacent values
v. Far out valuēs should be labelled on the plot in capital léttérs
vi. Outside values and àdjacent values should be labelled on the plot in small letters
víf: Tukey recommends the use of a "Fenced=Léter Dísplay", to reduce clutter

125

XVI.I. 77

(Note: Thèse definitions of outside values may not be sufficient in cértain cases: Deciding whethē \bar{a} value is deviant is usually a subjective process. Thése techniques help identify outliés but should not replāe comon sense.)

e. Expanded number sumary and schematic plot constructed on computer:

In the session introducing the $C M O-D A P$ computer system.

Topic 2. Adequacy of These Sumaries in Describing a Batch
I. Basic Issue: Once batch is condensed, how effectively do the sumaries describe it?
II. Features of batch that must bénchiuded in condensation:

1. Identification of typicai value
2. Determination of spread of batch
3. Location of outliers
4. Maximum; Minimum; and Range of batch
(Create 3 or 4 examples of schematic plots from data sets, and present them either on the blackboard or as transparencies: Discuss the appearance of each, indicating how the above necessary features are documented.)

Lecture Outline Location	Transparency \qquad	Transparency Description
Beginning	1	Lecture 1-2 Outine
Topic 1		
Section IV		
$1 . \bar{a}$	$2\}$	5-number summary
$1 . d$	3)	Stem-and-teaf display with depths
1.d.iv	$\stackrel{4}{(\text { overlay } 3)}$	5-number sumary located
1.d.vii	5	5-number summary for Pittsburgh populations
1.d.ix	2	Letter-value display
$1 . e$	6	Information contained in 5-number summary
1.e.1	7 7	Midspread
1.e.ii	6	Information contained in 5-number summary
1.f	8	Symetric Batch
1.8	9	1970 Pittsburgh Median Incomes
1.8	10	```5-number summary of median incomes```
2.ā	11	Simple schematic piot
$2 . \bar{e}$	12	Schematic piō; $\overline{5}-\overline{n u m b e} \bar{r}$ summary; stem-and-ieaf
2. $\overline{\mathbf{f}}$	13	Schematic piot of pennsyivania Net Migrations
$3 . \bar{a}$	14	Schematic plōt of Pittsburgh Median Incomes 128

3.d.i	$\overline{15}$	Numbers for Expanded Sumary
3.d.if	$\overline{1} \overline{6}$	Anatomy of a Schematic Plot
3.d.vil	17	Tukey's Fenced-Letter display

Lecture $1-2$

Condensation for Description
The use of numeric and graphic methods to describe the information contained in single batches

Lecture Content
Discuss methods of condensing a batch in order to describe the information contained in the batch

These "condensed summaries" must affectively convey this information

Main Topics

1. Condevising the batch to a small set of numbers
2. Adequacy of these summaries in describing a batch 130
XVI.I. 82

Léter-Volue Display
Five Number Summary for 1970
Populations of Pittslough Census Trouts

$$
\begin{aligned}
& 3185 \\
&
\end{aligned}
$$

Stem-and: Leaf Display
of the 1970 Populations of Pittsburgh Census Tracts

$$
u_{n, t}=100 \text { persons (values cut) }
$$

Depths

Senumber Summary
 E 300

H 1500
O
O^{H}
M2600
0^{m}
H3700

E 9900

132

for 1920 Pithbumber Summary

Evextreme
depth of one
minimum and maximum of batch

Me median
depth of $\frac{\mu+1}{2}$
50% of batch lies on either side

Ha hinge
depth of $\frac{\text { depthofmediant } 1}{2}$
half waxy from each extreme to median

Information Contained in a $\overline{5} \cdot$ Number Summary

$$
\text { Midspread }\left\{\text { Range }\left\{\begin{array}{ll}
E & \text { Minimum } \\
H & \text { Louie Hinge } \\
M & \text { Median } \\
H & \text { Upper Hinge } \\
E & \text { Maximum }
\end{array}\right\}\left\{\begin{array}{l}
50 \% \text { of } \\
\text { batch } \\
50 \% \text { of } \\
\text { batch }
\end{array}\right\} \begin{array}{l}
50 \% \\
\text { batch }
\end{array}\right.
$$

Midspread or H-spread is equal to the difference between the hinge's

$$
\begin{aligned}
& \text { Midspread }=U H-L H \\
& \text { where } U H=\text { upper hinge } \\
& L H=\text { lower hinge }
\end{aligned}
$$

Example: Midspread of 1970 Pittsburgh populations $=2200$ persons

Symmetric Batch

Example of a Sym mantric Batch:
$E=40$
H - 10
M 10
A 30
E

$$
\begin{aligned}
& \left.\begin{array}{c}
E-\mu=50 \\
A-E=50
\end{array}\right\} \text { Action halfway } \\
& \text { between } \\
& \text { cutiones }
\end{aligned}
$$

noto Aedien Iñcames of Familics and Unothital subaidends for fittsburgh Census Tracts

$1-2$
136

5- number Summary
for Median Income of Families and Unrelated Individuals for Pittsburgh Census Tracts

E	961	$\mu H-M=1373$
H	4734	$\mu-L H=2110$
M	6844	$E-M=6800$
H	8217	$M-E=6883$
E	13644	M

This is an
Asymmetric Batch:
Median lies closer to upper Ming e and closer to lower Extreme because of large oufliars.

Simple Schematic Plot
for 1970 Median Incomes for Pit. Census Tracts

Module I
[12]

QMPM
[13]

$$
\begin{aligned}
& \text { 5-number Summap } \\
& \text { Depth value } \\
& \begin{array}{cc}
i & E \\
17 \% & -6.8
\end{array} \\
& 34 \text { M } 0.9 \\
& 171 / 2 \text { H } 3.2 \\
& 1 E \text { i8.5 }
\end{aligned}
$$

Schematic Plot
of Pittsburgh Median Incomes

ERIC

Numbers for Cowteming a Batch jino aso expanded Suminery
M medien middlle value of batch
ε extrome mallestandlargestuake of bater
H hinge unlueshiffoaybetween Mand $\bar{\varepsilon}$
Itt andispreed difference between velues of hing is
step
(3/2) midspread
f inverfence one otep beyond hinges
F outer fënce anso stepstreyond hinges

Data values at eech end closest toj batetill insele, the inmerfence are "adjacent."

Data walues Folling between the inner and outer fence are outside:

Datavalues beyond the outerfare are far out-

Anatomy of a Schematic Plot

ERIC

Tukey's Fenced-Letter Display
\#N

M depth	median H depth E	
lowerhinge apperhinge minimum maximum		

Fonced-Letter Display
for Pitts burgh Medran Income Data
\# 186

Lecture 1-3. Transformations for Symetry

Transformations for Symetry: The Use of Various Algebraic Transformations to Promote Symmetry in a Single Batch

Lecture Content:

1. Discuss different types of data and the need for transformation
2. Introduce methods of determining a good transformation

Main Topics:

1. Units of measurement and different types of data
2. Methods of determining a good transformation

Tools-Introduced:

1. Transformation Sumaries

$$
145
$$

Topic 1. Unites ō Measurement and Different Types of Data
 unit of measurement

1. Unit of Measurement
a. Data àlways measured by some recording instrument, and data values in batch are given in specific units
b. Units may not be ideal for intended analysis
c. May need to alter a unit of measurement by transforming (2) the data, $\bar{t} \bar{o}$ obtain a better unit of analysis
2. Chosen unit of analysis depends on the type of data to be analyzed
a. Amounts-never negative, may be very large e. \bar{g}. height, weight; monetary units, distances; certain ratios
b. Counts-never negative; always integer valued e.g. numbers of persons; things; or events
c. Percentages or numbers bounded on both extremes--take values between a smaliest possible number and a largest possibie number e. \bar{g}. percentage Black (between 0 and 100%) statistical correlations (between -i and 1)
d. Differences of amounts or counts ("balances")--positive or negative, unbounded ég. profit (difference of monetary amounts) net migration (difference of counts of persons
3. Chosen transformation should make batch more symetric and, consequently, closer to being "well-behaved" and easily sunmarized
II. Problem: Need simple ruies for choosing a transformation
4. Simple ruiles may not always be correct
5. Best transformation depends on type of data to bé analyzed
6. Unfortunately, even best transformation may fail to increase symmetry
7. Or, by increasing symmetry, transformation may increase varlation, or produce more outliers
III. Solution: "Correct" transformation depends on type of data and on spread of data
8. If ratio of maximum to minimum value isquite iarge (magnitude of Z or greater), then transformation is essential.
9. If ratio of maximum to minimum is small (less than 20), then transformation will not change the appearance of the batch.
10. Correct transformations are "theoretically" correct, but may fail in practice
a. Amounts and Counts (particularly large counts) Logarithms most usēful, so are square roots
b. Percentages and smāll counts--Special "arcsine" transformation very useful
\bar{c}. Differences--Transform the counts or amounts whose difference is under consideration
iv. Examples
11. Counted Data--Pittsburgh populations
à. Take 1ogarithms, base 10 , of observations
B. Logaritms have not made batch symmetric. Batch is
asymutric, trailing out to the right instead of to
left
c. Try squaré roots of obsērvātions
d. Schematic plots show relationship between the raw data and the transformations
12. Percentage Data--Percent of individuals under povirty (6) level in Pittsburgh
à. Take Arcsine (Square Root (X)) for transformation $\overline{\mathrm{x}}=\mathrm{proportions}$, between 0 and 1
1.17
b. Spread has decreased, the symetry improved with special transformation
c. Schémātic plot shows increased symmetry, although outliérs still present
13. Amounts-Police expenditures in millions of dollars by state; 1973
a. Try square root and log transformation
\bar{b}. Logs are vèry effective
14. Difference of Counts--Net migrations for Pennsylvania counties; 1970=1974
a. Stem-and=1éaf shows syméry but large outliers
b. Net migration = Change in Population - Number of Births + Number of Deaths: Transform thése three batches separately.
\bar{c}. Positive and Negative values in the Change in Population batch make transformation impossible

1.8

Topic 2. Methods of Determining a Good Transformation
I. Basic Issue: Need a reliable method of finding a good transformation

1. Transformation must promote symmetry, and bring the outliers of the batch toward the median
2. Restrict ourselves to transformations from X to X^{R} for any value of R
3. This form of transformation includes logs ($\mathrm{R}=0)$
II. Problem: How do we find the correct exponent R?
III. Solution: Examine 5 -number sumary of raw and transformed batch
4. Correct transformation wíi have medłan halfway between hinges and extremes
5. Simple Ladder of Powers indicates that:
a. increasing R expañ \bar{s} the iargen vaiues ō \bar{x}
b: Decreasing R compresses the larger vaiues ōf \bar{x}
6. Làd̄ér óf Powers useful in conceptualizing how varíous transformations act on batches
IV. Methō: Transformation Sumaries
7. Example shows transformation sumaries for the number of bírths in Pennsylvaña counties; 1970-1974
(15)
à: Death \bar{s} take a similā transformation
b. "Naturai" increase in population Births - Deaths wili also be symmetric with logs of births and deaths
8. Features
a. Uséful if correct transformation for type of data in batch does not promote symmetry
\bar{b}. $\bar{A} \bar{s} \bar{s} \bar{o}$ usefui if batch does not fall neatly into one of the four types

149
xvi.1.101
c. Easily computable from 5-number sumary of raw batch
d. Hēlps "zero in" on the appropriate exponent, R, for transformation
3. Analytic Qūalities
a. Midhinge and Midextreme indicate whether R should be increásed or decreāsed
b. Correct R hàs mediān midhinge midextreme
c. Upwäds trēnd (M < midhinge < midextreme) indicates R should be decreāsēd
d. Downwards trend (M > midhinge $>$ midextreme) indicates R should be increased
e. Useful exponents:
i. $\bar{R} \equiv \overline{1}$, Raw data
ii. $R=2$, Squared data
iii. $R \equiv 1 / 2$, Square roots
iv. $\quad \bar{R} \equiv 0$, Logarithms

- v. $\quad \mathrm{R}=-\overline{1}$, Negative Reciprocals (change óf sign retains order). Rarely will addítional transformations be needed

4. Procedure
a. Compute 5-number sumary for batch
b. Compute Midhinge $(\mathrm{MidH})=1 / 2(\mathrm{UH}+\mathrm{LH})$ Midextreme (MidE) $=1 / 2($ Max + Min)
c. Compare MidH, MidE, and Median (M)
d. If $M<$ MidH < MidE, decrease R

If $M>M i d H>M i d E$, increase R
e. 5-number sumary for transformation of batch easily found by raising 5-number sumary of raw batch to the correct exponent
f. Continue search until $M=M i d H=$ MidE

$$
150
$$

5. Transformation sumarís constructed on computer:
a. Use let and reex to transform batch
b. Use sumpary and estats to examine éffect of transformation
c. Discovering the correct symnetrizing transformation is iterative process

151

Lecture 1-3
Transparency Presentation Guide

Lecture Outline Location	Transparency Number	Transparency Description
Beginning	1	Lécture 1-3 Outline
Topic 1		
Section $\overline{ }$		
1.c	2	Nēed for nēw unit of annāysis
$2 . a$	3	Types of Dāta \& Transformations
Section IV		
1:b	4	Stem-and-ièāf ō Lōgs óf Pittsburgh Populations
1.c	5	Stem-añ̄-īēáf ōf Square Roots of Pittsburgh populations
2.	6	Stem-ānd=lēā of Pittsburgh povērty
2.6	7	Stem-ānd-l̄āf of transformation
2.c	8	Schematic plot of transformation
3.	9	```Policè Expenditurès; by Stātē; 1 9 7 3```
4.	10	Net migrations of Pennsylvania counties
4.a	11	Stem-and=1eaf of net migrations
4.c	12	Stem-and-1eaf of Births and deaths
$4 . \mathrm{c}$	13	Stem-and-ieaf of change in population
		152

Topic 2

Section III
2. 14

Section IV

15
Transformation summaries

153

Lecture 1-3

Trans forming for Symmetry:
The use of various Algebraic Transformations to promote symmetry in a single batch.

Lecture Content:
Discuss different types of data and the need for transformation.
Discuss methods of finding
the "correct" trans formations.

Main Topics:

1) Units of measurements
and different types of data.
2) Methods of determining a good trans formation.

$$
15 .
$$

$1-3$
XVIII. 106

Example of Need for New Unit of Analysis.
Batch: Number of Blacks in each of the Census Tracts in $\bar{P}_{g} h$. in 1970

Units of Measurement : (old unit of analysis) eg. Black persons

Desire to have a different unit of añagsis: eg. percentage \bar{B} lads in each census tract
there fore,
Divide each data value by the total population of the tract and multiply by 100%.

New unit of analysis ; eg. Percent Black

Example.
Trāét i has 41 Black pérsōss
Population of Tract 1 is $9 \overline{\mathbf{5}} \mathbf{2}$ persons therefore,

$$
\begin{gathered}
\text { Tract i is }(41 / 472) \times 100 \%= \\
4.21 \% \text { Black }
\end{gathered}
$$

155

Types of Data
a) Amounts:
never negatives may be arbitrarily large. eg.) height, weight, $\$, \mathcal{Z}$.
\rightarrow Transformation: log or square root
b) counts:
never negative; always integer-vialued. eg.J population, number of families number of health care facilities.

c) Percentages or "bound "numbers:
values äre between a smallest and largest
possible number possible number.
eg., $\%$ black.
\rightarrow transformation: arcsine of square root
d) Differences of amounts or counts:
positive or negatruej un bounded.
Cg.) profit and loss, "net"data or balances net migration.
\rightarrow transformation: operate individually on the count's or amounts whose difference is under 1-3
consideration consideration 156
XVI.I.108

[4] Stem-and-Leaf of Base 10 logs of Pittsburgh Populations

PGH_LOGPOP

157

XVI. 1.109

$$
\begin{aligned}
& \frac{\text { Stem-and-Leaf display of suare roots of }}{\text { Pitsher }} \\
& \text { Pithburgh Populetions. } \\
& \text { (} u_{\text {nit }}=10 * * 0 \text {) } \\
& \begin{array}{l|l}
\text { 1. } & 8889 \\
2 & 1112344 \\
\text { 2. } & 56677789
\end{array} \\
& 3011112224444 \\
& \begin{array}{l|l}
\text { 3. } & 555566667777788999 \\
4 & 00002333335444444 \\
4 . & 5555666667788888899999
\end{array} \\
& \text { 5 } 0000111112223333444444 \\
& \text { 5. } 555555666677 \not 7 耳 885899 \\
& 60000011111122222333334 \\
& \text { 6) } 556667788889 \\
& 712222233 \\
& \text { 7. } 5566789 \\
& 8022 \\
& 8.168 \\
& 155
\end{aligned}
$$

$$
[6]
$$

Stem-ind-Leaf display of ph. Nercegtage. in Pouerfy Percertage Dafa

```
PGH_PERPOV
    (UNIT 10**)
    = 交 22223j3j
    F | 4444444555555
    S 1 6665566666666777777777777777
    * 888BEEB38999979999
    : Es4008e81:11111:
        T : 2222222222223333333
        F|44444555555
        s | 66E667177
        1. 18899999979
        2- I E06%1
        T 1 233
        | 4445555555
        S177
        2. 1 99
        3 1 111
        T | 222
        F14444
        S 1 66
        3. % $889
        T ! 2
        HI 1 46. 46. 49.j 49.7 5j 5% 59.6 74.2
```

 1-3
 159

$$
160
$$

 (states listed by Federal Administration Region)
 numbers of persons, Counties in Alphabetical Order.

GMPM

Stem-and-Leaf Display of Pennsylvania Counties, Net Migrations

LO ل-131700. -82100. -22800.

$(U N I T$	$10 \% 2)$
-4	5
-3	
-2	8
-1	54337100
-0	55543979
0	00191445566789
1	2334445888
2	02255667
3	249
4	269
5	17
6	45

HI 」8000. 5300.

Som-and beaf Displags of Change Number of Dirth and
Deaths in Pennsyluania Counties; 1970-1934

Deaths $($ unit $=$ 10833)

O	0000000001919191919
T	222222222393333
F	44555555
S	F
Q	889999
i	00019
T	2259
F	S
S	
i.	q

HI | $24100.00 \quad 24400.00$
$74000.00 \quad 100600.00$

Stem-and-Leaf of Change in Population

$$
\left(u_{n i t} \equiv 10+2\right)
$$

LO | -10 S $200.00-73000.00-14700.00$

-1	1
-0	63332.2
0	1226778
1	02233566797
2	172222778
3	17247
4	0449
5	4
6	9
7	14
8	0001
9	2
$H I$	10000.00
	10500.00
	17800.00

XVT. 1.119

Transformation Summariés. Numbér ef

Base 10 logárithons Apprōricte: Transformation

Lecture 1-4. Analysis of a Well-Behaved Batch

Analysis of a Well-Behaved Batch: Presentation of a special Type of Batch and Examination of its Features

Lecture Content:

1. Define a well-behaved batch and discuss its characteristics
2. Introduce measures to summarize this special kind of batch

Main Topics:

1. Definition of a well-behaved batch
2. Location and scale measures for à well-behaved batch

Tools Introducid:

1. Mean
2. Variance and Standard Deviation

$$
176
$$

Topic 1. Definition of a Well-Behaved Batch
I. Basic İssue: Defining a well-behavē batch

1. Well-behaved batches are theoretical entities and are rarely observed empirically
2. Many data analysts incorrectly believe that well-behaved batches are common
3. We discuss them because of their roie in regression analysis
4. The well-behaved batch presented here was artificially constructed to facilitate the introduction of the definition
II. Definition
5. Well-behaved batch is:
a. Symetric: MidH $=$ Mide $=\mathrm{M}$
b. Devoid of outiiers
6. For a well-behaved "standard" batch with $M=0$, and Midspread $=1.36$:
a. 50% of batch $>0 ; 50 \%<0$
b. 50% of batch is between -0.68 and 0.68
c. 80% of batch is between -1.29 and 1.29
d. 80% of batch is between -1.65 and 1.65
e. 95% of batch is between -1.96 and 1.96
f. Extrièmes are approximatély -2.60 and 2.60 ; but may bē lärger
7. Well-bēāaed batch has shape that resembles (in theory) a Gaussian (or "normal") function

$$
171
$$

Topic 2. Location and Scale Measures for Well-Behaved Batch

I. Basic Issue: Need for special sumārization tools for a well-behaved batch

1. All well=behaved batchēs hāve similar appearance
2. Two well-behaved batches may differ only in:
a. Location-where batches are positioned along the Real number line
b. Scale--how spread out thè bātchés are, amount of variation in the data vāluēs
3. Need to quantify these concepts to facilitate comparison of well-behaved batches
II. Problem: Which location and scale measures are appropriate?
4. The median of a batch is a measure of location, às is the (7) mode of a batch (data value with greatest frequency of occurrence) and the arithmetic average, or mean, of the batch
5. The midspread and range are measures of spread. Thé variance; or average of the squared differences from the mean; also measures spread
6. The standard deviation, or square root of the variance of a batch, in the same unit as the data values, is also useful in measuring the scale of the batch

III: Solution: Mean and standard deviation are the correct measures of location and scale, respectively

1. In a well-behaved batch, \bar{X}, mean, and M, median; are equal to each other and to the mode
2. In a well-behaved batch, the standard deviation, s, is approximately equal to $3 / 4 \bar{x}$ Midspread
IV. Methods: Mean and Standard Dēviation
3. Example shows mean and standard deviation of our hypothetical well:-behaved batch

$$
172
$$

A well-behaved batch with $\bar{X}=0$, and $\bar{s}=1$; is calied a standard or standardized well-behaved batch

2. Features

a. Mean and standard deviation are sufficient to describe a weil-behaved batch (explain statisticai sufficfency)
b. Any weil-behaved batch mev be standardized by subtracting the mean from each data value and dividing the remainder by $\bar{s} ;(X-\bar{X}) / \bar{s}$
c. Mean and standard deviation are not sufficient to describe batches that are not well-behaved
3. Ánàytíc Quaíities
a. Médian and mídspreád are more résistant; ō iéss áffectéd by outíiés, than mean and standard deviation
b. Nonetheless, \bar{x} and s are ciassical measures of location and spread (for ali batches)
4. Procedures
a. $\bar{X}=(1 / N) \quad \sum_{i} \bar{X}_{i}$
b. $s=\sqrt{(1 / N) \sum_{i}\left(X_{i}-\bar{x}\right)^{2}}$
5. Another example: I.Q. scores for 10016 year old females
a. Batch is well-behaved:
i. Symmetric
ii. No outliers
iii. $\overline{\bar{X}}=\bar{M}=101$
iv. $s=3 / 4 \times$ Mid̄spreā $\equiv 12$
b. Standardize batch. Note resemblance to hypothetícal
standard well-behaved batch
(This lecture should be followed by a review óf the entire unit before the quiz is given.)

Lécture 1-4
Transparency Presentation Guide

Lecture Outline Location	Transparēncy Number	Transpārēncy Description
Beginining	1	Lecture 1-4 Outline
Topic 1		
Section II		
1.	2	Hypotheticāl wē11-Behāved Batch; Sorted
$1 . a$	3	Stem-and-Leaf and 5 Number Summary of Hypothetical Batch
$\overline{1} . \mathrm{b}$	4	Schematic plot of Hypothetical Batch
2.	5	Histogram of Hypothetical Batch
3.	$\stackrel{6}{(\text { (ove: }} \stackrel{1 \text { ay } 5)}{ }$	Gaussian function
Topic 2		
Section II		
1.	$\overline{7}$	Measures of Location of a Batch
2.	8	Measures of Scale of a Batch
Section IV		
1.	9	Hypothetical Bātch, mean and standard deviation
5.	10	```I.Q. scores for 16 year old females```
5.9	11	Stem-and-Leaf of I.Q. scores
5.b	12	Standardized I.Q. scores
5.b	13	Stem-and-Leaf of Standardized Scores

174

Lecture 1-4

Analysis of a Well-Behaved Batch
Presentation of a very special type of batch and an examination of its features

Lecture Content
Define a well-bethaved batch
Discuss its characteristics
Introduce measures to summarise this special batch

Main Topics

1. Definition of a well-behaved batch
2. Location and scale measures for well-behaved botches 175
XVIII. 126

Stem-and-Leaf of a Hypothetical WellBehaved Batch. values cut Unit 三. 10

5. Number Summary of Batch

7	E	-2.60
25	H	-0.69
$50 \overline{1} / 2$	M	-0.005
25	H	0.70
1	E	2.50
	M	-0.005
$M i d$	H	-0.005
$M i d$	E	-0.05

(Very symmetric) ty 177

Mõule i

Schéwatic plot of Hypotheticail Well-Betraued Batch.
[4]

1.4

178

Mypothetical Histoyram for awoli-buhavod Batch; with $\overline{5}$ numben summary
[5].

179

Gaussian Function as an approximation to the hypothetical histogram for a Wail- Behaved Batch.

Measures of the location of a Batch
(The Three Lis)

1) Median (M)
middle value of a batch.
2) Made (M0)
moot frequent data value of a batch.
3) Mean (\bar{X})
arithmetical! average of a batch.

$$
18.3
$$

ERIC

Measures of the Scale of a Batch

1) Midspread
difference in hinges or a batch.
2) Range difference in extremes of a batch.
3) Variance $\left(s^{2}\right)$
querage squared difference of the values from the mean of a batch (in units ${ }^{2}$).
4) Standard Deviation (s)
square root of the variance, s^{2} (i same unit as data).

Hypothe trical Well-Behaued Batch

$$
\begin{aligned}
& \text { cint }=.10
\end{aligned}
$$

$$
\begin{aligned}
& M \equiv-.00 \overline{5}=0 \\
& \text { Midspread }=.104 .69=1.39 \\
& 3 / 4 \times \text { Midspread }=1.04 \\
& \bar{X}=-.005 \approx \overline{0}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
& S=1.01=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

Our well-behay \& bateh
has a location of $<\approx 0$
and a scale of $3=8.0$.

Batch of I. Q. Scores [10] for 16 year old females.

5-number Summäry

1	E	76
26	H	12
$501 / 2$	M	101
26	H	108
1	E	128

$$
\begin{gathered}
\text { mids pread = } 108-92=16 \\
3 \mu_{4} \times \text { miesespread }=12
\end{gathered}
$$

$$
\begin{aligned}
& \bar{X}=101 \\
& S=11.5
\end{aligned}
$$

$$
\hat{s}=11.5
$$

mid	101
mid	106
102	

 Wence, it is well-behrved.

Standardie of Uniues of Batch of I. A. Scores

$$
\text { standerdizaduatie }=\frac{x-10 i}{11.5} \text {. }
$$

of standardized-and-Lalues of Display
of Standardizedtalues of Batch of I.Q. Scores

$$
\begin{aligned}
& { }^{5} \text { unit =.1) }
\end{aligned}
$$

5-number Summary

$$
\begin{array}{c|c}
E & -2.06 \\
H & -0.69 \\
M & 0.02 \\
H & 0.74 \\
E & 2.26
\end{array}
$$

Midepread= 1.43 $3 / 4 \times$ midspread $=1.07$

Homework Problem
 Unit 1

1. A municipality is trying to decide between building its own steamelectric generating plant or purchasing power from a private supplier. Data exist on the installed generating capacity of 33 plants in municipalities with similar socioeconomic and demographic characteristics. Installed generating capacity is a measure of the size of a plant. A first step fn the decision process involves examining the range of plant sizes. Sort the data on installed generating capacity; then make a histogram.

Do the data cluster or are they uniformly spread out? Are tne data symmetrical? Are there any outliers? If there are clusters or outliers, wh. re do they occur? What can the municipality infer from the sort and histogram?

Installed Generating Capacity in Megawatts

Bull Run	950	Barry	1770.8
Colbert "A"	946.6	Canal	542.5
Colbert "B"	550	Etiwanda	1069.1
Gallatin	1255.2	Astoria	1550.6
Johnsonville "A"	1485.2	Ravenswood	1827.7
Johnsonvilie "B"	दcis. 2	Conemaugh	1872
Kingston	1700	Kyger Creēk	1086.3
Paradise "A"	1408	Keystone	1872
Paradire "B"	1150.2	Elrama	510.3
Join Sevier	823.3	Mt. Storm	1140.5
Shawnee	1750	Joppa	1100.
Widows Creek "A"	853	Four Corners	$1 \overline{6} 3 \overline{6} .2$
Widows Creek "B"	1125	Fort Martin	1152
Big Sandy	1050.8	Wabash River	908
Cane Run	1016.7	Pārish	1255.4
Clifty Creek	1303.6	Sam Bertron	826.3
		Gannon	1270.4

190
Yūt= $12 \mathbf{I O}_{-}^{-}$
2. Below is a histogram of the 1973 population of the U. S. for the fifty states and the District of Columbà and the original data from which the histogram was composed. What is the interval of population size into which the iargest number of states fall? What is the numbér ōf stāē in that intérval? Which states are the outifers óf this batch? How would a logarithmic transformation of this batch affect the display? Data are on the next page.

191

Module I

State	1973 Population (in thousands)	State	1973 Population (in thousan ${ }^{\text {f }}$
Maine	1,028	N. Carolina	5,273
New Hampshire	791	s. C̄arolina	2,726
Vermort	464	Georgia	4,786
Massāache	5,818	Florida	7,678
Rhode	913	Kentucky	3,342
Connēcticut	3,076	Tennessee	4;126
New York	18,265	Alabama	3,539
New Jerssey	7,361	Mississippi	2,281
Pennsylvania	11,902	Arkansas	2,037
Ohio	10,731	Louisiana	3,764
Indiana	5,316	Oklahoma	2,663
İlinois	11,236	Texas	11,794
Michigan	9,044	Montana	721
Wisconsin	4,569	İdaho	770
Minnesota	3,897	Wyoming	353
Iowa	2,904	Colora do	2,437
Missouri	4,757.	New Mexico	1,106
N. Dakota	640	Arizona	2,058
S. Dakota	685	эもā	1,157
Nebraska	1,542	Nevãda	548
Kansas	2,279	Washington	3,429
Delaware	576	Oregon	2,225
Raryland	4,076	Cālífornía	20,601
D.D.	746	Alaska	330
Virginía	4,811	Hawaíi	852
w. Virginia	1,794		

192

QMPM
3. Below are the test scores of fifty fifth grade students. Make a stem-and-leaf and a schematic plot of this batch. What are the mean and standard deviation of this batch? How well= behaved is this batch? What is the median of the batch? How does it compare to the mean?

72	112	56	104
67	135	97	66
76	102	97	78
77	93	63	82
92	87	53	81
85	81	112	96
79	106	100	72
65	71	49	83
75	82	77	67
83	112	93	78
89	102	86	99
102	96	90	105
118	80		

193
4. a. As a menber of mayort task force on residential integration you have been asked to make a study of che distribution of nonwites in omaha, Nebraska. The data below are from the 1970 U.S. Census of Population. They give the percent of the population of éach census tract in Onaha that is nonwhite. Put them in the form of a $\bar{s} \bar{t} \overline{e m}-\overline{a n d}-1 \overline{e a f}$ display.

0.253	0.000	3.811	0.559	2.306	$10.18 \overline{8}$
27.276	21.528	43.338	44.603	37.037	42.392
52.831	35.694	98.315	69.719	1.597	6.769
6.941	1.329	0.0 .357	1.095	0.511	0.247
0.121	0.233	0.593	0.591	0.689	4.660
0.119	$6.90 \mathrm{E}-02$	0.777	0.322	0.152	$3.39 \mathrm{E}-02$
$7.27 \mathrm{E}-02$	0.110	$8.64 \mathrm{E}-02$	0.421	0.544	0.117
1.056	0.475	0.369	0.363	0.153	0.132
0.206	0.145	0.563	0.174	7.943	23.754
17.297	5.663	$9.35 \mathrm{E}-02$	$5.58 \mathrm{E}-02$	$5.33 \mathrm{E}-02$	0.605
15.269	20.628	1.875	1.507	1.336	1.083
0.326	0.288	0.129	$9.57 \mathrm{E}-02$	0.296	$4.82 \mathrm{E}-02$
$5.96 \mathrm{E}-02$	0.446	$5.94 \mathrm{E}-02$	$7.41 \mathrm{E}-02$	$2.57 \mathrm{E}-02$	$3.39 \mathrm{E}-02$
$7.05 \mathrm{E}-02$	0.118	0.114	1.313	1.473	$5.05 \mathrm{E}-02$
0.239	0.128	14.012	0.232	0.153	0.207
0.262	$5.44 \mathrm{E}-02$	11.111	$2.37 \mathrm{E}-02$	$6.79 \mathrm{E}-02$	$5.29 \mathrm{E}-02$

b: Prepare à five number sumary of thēse data and present it as a letter-value display
c. Present a fenced letter display.
d. Prepare \bar{a} schematíc piōt of these dā̄a.
é: The members of the mayor's task force are unfamiliar with stem=and-leaf display. Put the data into the form of a histogram. What information has been lost in going from ōe to the ōthér?

194

5. The figure below is a schematic plot of the percent of families in Onaha census tracts with incomes below the poverty level in 1970. Label the different kinds of outliers, the hinges, and the median and indicate the values that these points correspond to.

195
6. Test scores on a group of children (age 10) from the same neighborhood were as follows:

$$
2.95,3.22,3.32,3.40,3.59,3.73,3.80
$$

To study the effect on various sumaries of a change in one value in a batch, vary the value shown as 3.22. Examine the effects on the mean, median; standard deviation, and $\mathrm{S}=3 / 4 \mathrm{x}$ midspread, as the moving value goes from below 2.95 to above 3.80. Use intervals of .2 (i.e., moving value first equals 2.90 , then 3.10 , then 3.30 , etc.) Also move the value to 4.90 .
7. (a) Draw two different stem-and-leaf displays of the welfare data by stretching or squeezing the stem. Which do you think is preferable? Why? Do they both give the same information about the batch?
(b) What do you infer from your analysis about the cost of welfare per inhabitant? Pay particular attention to outifers.
(c) Summarize the data in a letter-value display. Now exclude outifers and present in a letter-value.display. Comment on the differences.

Data are on the next page.

1972 Cost of Welfare per Inhabitant by State

Alabama	\$ 40.43	Nebraska	\$ 27.76
Aláska	50.09	Nevada	20.36
Arizona	27.05	New Hampshire	32.73
Arkansas	49.70	New Jersey	50.27
California	97.30	New Mexico	35.98
Colorado	52.48	New York	89.37
Connecticut	38.03	North Caroina	25.59
Delaware	36.56	North Dakota	29.45
District of Columbia	100.44	Chio	30.85
Florida	23.52	Oklāhoma	54.90
Georgia	44.55	Oregon	35.94
Hawaii	52.21	Pennsylvania	50.55
Idaho	30.40	Rhode Isiland	50.87
Illinois	55.43	South Carolina	16.35
立nđ̄īañà	23.53	South Dakota	$2 \overline{8} . \overline{7} \overline{5}$
Iowa	33.61	Tennessee	33.51
Kansas	30.30	Texas	33.61
Kentucky	35.92	Utah	33.35
Louisíàna	51.36	Vermont	54.65
Maine	51.61	Virginia	25.67
Maryland	35.64	Washington	48.16
Massachusetts	71.23	West Virginia	34.01
Michigan	56.72	Wisconsin	32.39
Minneesota	45.89	Wyoming	18.50
Mississippi	48.22	(Source:1975 World Almanac, Page $157)$	
Missouri	40.43		
Montana	24.24		
	197		

XVI.I.146
8. A recent study of career choice listed the percentage of doctorate-hoiders who heid a job in the same fieid as their doctorates. Prepare a stem-and-ieaf dispiay of the results.

Do the data ciuster or are they uniformiy spread out? Are the data bymetricai? Are there any outifers? If there are any clusters or outliers; where do they occur? What can you infer about career choice from your analysis?

Mathematics	91\%
Physics; Astronomy	90\%
Chemistry	84\%
Earth Sciences	93\%
Engineering	92\%
Agriculture; Forestry	73\%
Hesilth Sciencess	78\%
Biochemistry; Physiology, Biostatistics	70\%
Anatomy, Cytology, Genetices, Entomology	47\%
Botany; General Biology; Botany	51\%
```Anthropology. Archaeo- log```	NA
Sociology	79\%
Economics, Econometrices	76\%
Polítical Sćfence; internatíonal Reiations	81\%
History	85\%
亡ã:guage, íterature	83\%
Philosophy, Arts	70\%
Business; Theology	73\%
Education	81\%
Psychology	90\%

QMPM
9. Identify the foilowing batches as bounded numbers, amounts, counts, or differences.
(a) The average hourly earnings in manafacturg industries were:

1950	$\$ 1.44$
$195 \overline{5}$	$\overline{1} .86$
1960	$2.2 \overline{6}$
1965	$\overline{2} .6 \overline{1}$
1970	$3.3 \overline{6}$

(b) Grain receipts at western Canadian grain centers in 1972-73 (in Thousands of Busheis):

Wheat	$63 \overline{3}, 25 \overline{8}$
Oats	32,484
Barley	$23 \overline{6}, \overline{8} 1 \overline{6}$
Ryē	9,252
Flaxseè	$18,34 \overline{6}$
Rapeseed	62,949

(c) Unemployment rate for Americans aged it and over:

Spanish 7.5
White 4.3
Black $\quad 9.3$
(d) Indians in North Dakota, 1970:

Apache	9	Kaw; Omaha	33
Chérokee	$\overline{50}$	Lumbee	33
Chippewa	6,721	Shoshone	11
Créék	18	Sioux	3,655
Iroquois	45	other	1,629

199
XVI.I. 148
(e) Performances of record long run Broadway plays:

Fiddler on the Roof	$\mathbf{3 , 2 4 2}$
Lifè with Father	3,213
Tobacco Road	3,182
Hello Dolly	2,844
My Faír Lady	2,717
Man of LàMancha	2,328

(f) Change in population major Alaskan cities between 1960 and 1970 census:
-

Anchorage	$\mathbf{3 , 8 4 4}$
Fairbanks	1,460
Juneau	747
Ketchikan	511
Spenard	9,015

(8) Sales of recreational vehicies, 1973 :

Travel trailers	212,300	units
Motor homes	129,000	units
Truck campers	89,800	units
Camping trailers	97,700	unfts
Pickup covers	223,700	units

(h) Percent of high school senfors with no college or vocational school plans; by family income (1974)

Under $\$ 5,000$	27.1	
$\$ 5,000=\$ 7,499$	$\mathbf{2 3 . 5}$	
$\$ 7,500-\$ 9,999$	21.0	
$\$ 10,000-\$ 14,999$	19.7	
$\$ 15,000-\$ 24,999$	15.3	200
$\$ 25,000$ and over	6.9	

QMPM
(i) Distance from home to college for first=time students in 4-year colleges, 1973:

Distance, in Miles

10 or less
15.8

11-50
19.9

51-100
101-500
more than 500

Percentage Distribution
(j) Average raise received by instructional staff in universities at beginning of 1975-76 school year:

Professor	$\$ 1,748$
Associate Professor	1,045
Assistant Professor	848
Instructor	$\overline{857}$

(k) Distribution and frequency of low-income families; by place of residence

Number in
Residence
Group (Millions)
Urban
27.5

Rural non= farm
11.4

Rural farm
4.8
(1) U. S. shoreline; in statute miles:

Atlantic coast	$\mathbf{2 8}, 673$
Gulf coast	17,141
Pacific coast	$\mathbf{4 0}, 298$
Arctic coast (Alaska)	$\overline{8} \overline{8}, 633$

- 201
XVIII. 150

10. Béfow is a list of food indexes for major U.S. citiē in July, 1974. Prepare a stem-and=leaf display and fivé number sumary. How does this batch compare to the hypci.ettcal well-behaved batch?

Átionta	162.7	Milwaukee	154.8
Baitimore	163.1	Minneapolis	162.9
Boston	161.6	New York	165.0
Buffaio	159.9	Philadelphia	164.5
Chicago	160.4	Pittsburgh	162.9
Cincinnati	163.2	Portiand	154.8
cleveland	159.2	St. Louis	157.6
Dallas	155.7	San Diego	159.2
Detroit	162.6	San Franctsco	154.8
Honolulu	156.9	Scrantón	159.3
Houston	162.7	Seattle	155.3
Kansas City, MO	160.7	Washington, D, C.	164.4
Los Angeles	155.5		

$$
202
$$

11. Population densities by state are skewed towards low density. Select an appropriate transformation for symetry, based on the sumary numbers. Do the transformation and present the results in a stemand-leaf display. Discuss clustering, outiérs and symmetry.

Population Density by State, 1970
(peoplè pēr square mile)

Ala bama	67.9	Montana	4.8
Aiaska	0.5	Nēbrāskā	19.4
Arizona	15.6	Nevada	4.4
Arkansas	37.0	New Hampshire	81.7
California	127.6	New Jersey	953.1
Cólorão	21.3	New Mexico	8.4
Connecticut	623.7	New York	381.3
Delaware	276.5	North Carolina	104.1
District of Columbia	12,401.8	North Dakota	8.9
Fiorída	125.5	Ofio	260.0
Georgịa	79.0	Ok 1ainoma	37.2
Hawaíi	119.8	Oregon	21.7
Idaho	$8 . \overline{6}$	Pennsylvania	262.3
İiinois	199.4	Rhode Island	905.5
Indiāna	143.9	South Carolina	85.7
Iowa	50.5	South Dakota	8.8
Kansās	27.5	Tennessee	94.9
Kentucky	81.2	Texas	42.7
Louisisiana	81.0	Utah	12.9
Maine	32.1	Vermont	47.9
Maryland	396.6	Vírginía	116.9
Massachusetts	727.0	Washington	51.2
Michigàn	156.2	West Virginia	72.5
Minnesota	48.0	Wisconsin	81.1
Mississippi	46.9	Wyoming	3.4
Missouri	67.8		

(World Almanac, P. 154)
XVI.I.152

## Homework Solutions

 Unit 11. Installed Generating Capacity in Megawat $\overline{\text { i }}$ (Sorted)

510.3	1140.5
542.5	1150.2
550.	1152.
691.2	1255.2
823.3	1255.4
826.3	1270.4
846.6	1303.6
853	1408
908	1485.2
950	1550.6
1016.7	1636.2
1069.1	1700
1086.3	1750
1096.8	1770.8
1100.3	1827.7
1125	1872
	1872

The data cluster between 800 and 1300; so they are not uniformiy spread out. The batch is roughiy symutrical and has no outifers. The municipaifty will be interested in noting that plant sizes in similar muncipalities range from 500-1900 megawatts installed generating capacity: Central values of that range are observed more often than the extremes and a typical value (the median) is 1140.5 megawatts.

204


Megawatts installed Generating Capacity
2.
a) The interval of population size into which the largest number of states falls is zero to one million.
b) The number of states in that interval is thirteen.
c) Caiffornia and New York are the outliers of this batch.
d) A logarithmic transformation of this batch would promote symmetry by compressing the larger values in the batch while stretching out the smaller values.
3.

UNIT $=1$
A.


B. MEAN $\equiv \Sigma \bar{X}_{i} / 50=86.46$

STD. LEV.

$$
\sqrt{\frac{\sqrt{N\left(x_{1}-\overline{\bar{x}}\right)}}{N}}=1.75
$$

Where $N=50$ and
$\bar{X}=$ mean
C. MEDIAN $=84$ (depth - 25h)

This batch is roughly symmetric and Gaussian in shape: The median and mean are approximately equal. Midhinge $=87.5$; Midextreme $=92$; these values are also close to the median, but there is clearly an upward trend- There is one outside value, which could not be the case in a well-behaved batch. However, for real data; this batch comes remarkably close to being well behaved. Notice also that $3 / 4 x$ midspread $=17.25$; which is close to the standard deviation.

QMPM
4. ( $\bar{A}$ ) Un̄̄it $\overline{=} .01 \%$

$0 \star$	022334555555566777899
1	11111222345557
2	0033345689
$3^{\star}$	22566
4	247
5	1145699
$6 \star$	08
7	1
8	
$9=$	

$$
\text { Unit } \equiv .1 \%
$$

$0 \%$.

1	0003334558
2	3
3	8
4	6
5	6
6	79
7	9
8	
9	

$$
\text { Unit }=1 \%
$$

0**	
1	01457
2	0137
3	57
4***	234
5	2
6 .	$\beta$
7***	
8	
$9 \beta$	$\beta$

(B) 非6 \% pop, nonwhite in omaha census tracts


208
4. (C) \$96 \% nonwhite pop. in omaha census tracts

M 48h	. 355		1.69
H 25	. 11	1.8	
1	0	98	

f $\quad\left|\begin{array}{cc}-2.43 & 4.34 \\ \text { XXX } & \text { three } \\ -4.97 & 6.88 \\ \text { XXX } & \text { nineteen }\end{array}\right|$

ADJ: $0,3.8$
OUT: $\quad 4.6,5.6,6.7$
FAR: 6.9, 7.9, 10, 11; 14, 15, 17, 20, 21, 23, 27, 35, 37, 42, $43,44,52,69,98$
(E) Although the histogram shows that almost $80 \%$ of the census tracts populations are less than $10 \%$ nonwhite, you lose the information that 21 tracts are less than $1 \%$ nonwhite, that 62 tracts have less than $1 \%$ nonwhite, and so on. You also lose the specific values.

In short you have lost a lot of the detailed information.
4.D Percent Non white per Census Tract in Omaha


\% Now. White

ERIC

Robles 5
\%o families in poverty


upper tenge 15.0 Median 8.0 tower hinge 5.0

$$
212
$$

ERIC

Module I
6)

moviog vilue	man	nedian	$\therefore \sqrt{\frac{I(\bar{x}-\bar{x})^{2}}{n-1}}$	$\operatorname{sd=} \sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}$	$\dot{\hat{s}}=\frac{3}{4} \bar{x} \text { eidapread }$
2.9	3.38	3.40	. 35	.33	-39
3.1	3.41	3.40	. 32	. 29	-34
3.22	3.43	3.40	. 30	. 28	. 29
3.3	3.44	3.40	. 29	. 27	. 26
3.5	3.47	3.50	. 29	. 26	. 23
3.7	3.50	3.59	. 30	. 28	. 26
3.9	3.53	3.59	.33	-30	. 30
4.9	3.67	3.59	. 61	. 57	. 30

While the mean varies with every shift of the moving value; the median jump twice; but remains constant for any extreme magnitude of the moving value. Similarly, while the standard deviation moves with every shift of the moving value; the midspread does shift, but remains constant for any extreme magnitude of the moving value. What is demonstrated is the resistance of the median and the midspread to extreme values of the batch.

$$
213
$$

QMPM

7 (a) Two likely stem-and-leaf displays are:
1972 Cost of Welfare per Inhabitant by State


There is no one preferable scale; as long ass you can defend it, you may select any scale. An argument could be made in favor of
 better idea of the shape.

Both scales give the same information about the batch; one might argue that it is easier to read the information from the stem-and-leaf on the right; or that the scale on the left emphasizes the cluster and the outifers.
(b) In 1972 , the cost of welfare per inhabitant ranged from $\$ 16.35$ in South Carolina to $\$ 100.44$ in the District of Columbia. There is a cluster of values around $\$ 30-35$ and a smaller cluster at \$48-52. There are four outliers-Massachusets, New York, California, and the District of Columbia--all of which were high. The outliers are all states with large metropolitan areas. D.C., with the highest cost per inhabitant, is exclusively urban. The lowest costs are associated with rural states: S.Carolina, Wyoming, Nevada. Thus high welfare costs per inhabitant are associated with urban areas.

$$
214
$$

XVI.I. 162
7. (c)
$5{ }^{-7}$


When high outliers are excluded, the only number of the five number sumary with a major change is the maximum. Hinges change very little. The batch is much more symetric with outliers excluded.

QMFM
8.

LO	47,51
7	3003
8	896
9	4131
9	5
	10320
	1 value missing
unit $=1 \%$	

The data do not cluster, but are not quite uniform éthē, due to the gap at 86-89 followed by several values at 90-93. However; by contrast with bellshaped and skewed batches; this one may be considered uniforim. By the same reasoning; the data are relatively symetric. Thére are two low outliers: 47 and $5 i$. Roughiy $70-93 \%$ of doctorate-holders in various fields have jobs in the same fieid. Biological sciēnces are an exception, where fewer doctorāe-holders are employed in their field.
9.
a) amount
b) amount
c) bounded numbers
d) count
e) count
f) difference
g) count
h) bounded numbers
i) bounded numbers
j) difference
k) count

1) amount
10. Two likely stem-and-leaf displays are:

$$
\text { unit }=1
$$

$15 f 554445$

and

$$
\text { unit }=. \overline{1}
$$

154	888
5	753
6	
7	6
$\overline{8}$	
159	9223
160	47
1	
2	7679
3	12
4	54
165	0

The five number summary is:

	$\mathrm{n}=25$	
13 M		
7 H	156.9	162.9
E	154.8	165.0

To compare with the hypothetical well-behaved batch, calculate the midhinge and midextreme:

$$
\begin{aligned}
\text { Midhinge } & =\frac{156.9+162.9}{2}=159.9 \\
\text { Midextreme } & =\frac{154.8+165.0}{2}=159.9
\end{aligned}
$$

This batch appears weil-behaved in that its median, midhinge, and midextreme have approximately the same value. However, it is clear from either stem-and-ieaf display that the batch is more uniform than beil shaped; therefore, it is not an example of a well-behaved batch.

## GMFM

1i) After a logarithmic transformation, the data are:

```
unit * .l
```



These data now more ciosely approximate the well-behaved batch. They are roughly symetric; with a ciuster around the center (median 1.8): There are two outifers: one high at 4.0 (D.C.) and one low at -. 3 (Alaska).

## Unít 1 Quiz

i. Āswer the foliowing questions briefiy and generaly.

1. What is a batch?
2. How are the median and mean affected by deviant values in a batch?
3. What is the midspread?
4. What is the midhinge?
5. What techniques are there for condensing a batch?
6. What are the possible advantages of condensing a batch?
7. What are the most common transformations?
8. What is the simpie lader of powers?
9. What are the possíbie advantages ō transforming singie batches?
10. What is a weil-behaved batch?
11. How may two weil-behaved batches díf $\bar{f} \overline{\mathrm{e}}$ r?
12. How ís a weli-b̄ehavē bātch standardizē̃?
II. Below is a list of the infant mortality rates (deaths per 1000 live births) for the sixteen Easter Montana counties.

Carter	28.4	Powder River	15.0
Custer	14.2	Prairie	15.7
Daniels	26.3	Richland	16.6
Dawson	17.2	Roosevelt	42.2
Gallon	21.1	Rosebud	40.8
Garfield	12.1	Sheridan	19.7
McCone	24.2	Valley	26.2
Phillips	28.1	Wibaux	27.2

Do the following with the data:

1. Sort the batch.
2. Prepare a stem-and-leaf display.
3. Make a ifive-number summary.

女. Make a schematic plot.
5. Discuss the data, based on your work in parts 1-4.
(By now you should know what questions to ask of a batch.)

$$
22!
$$

Unit 1 Quiz
Solutions
I. i. A batch is a set of similar numbers obtained in some consistent fashion.
2. The médian is affected very iftile by deviant values. Extremely iarge values may increase the mean a lot, while extremely smail values may greatiy lower the mean.
3. The midspread is the distance between the hinges (upper hinge = lower hinge). It is a measure of spread.
4. The mídspread ís the value halfway between the hinges

5. Śchematíc piots, expandē schematic piots, five number sumaríes, expandē number summaries are techniques for condeñ $\overline{\text { ing }}$ a batch.
6. The purpose of condensing a batch is to summarize it by describing a typical value and variation of the values; and identifying outliers.
7. Comon transformations are of the form $X \rightarrow X^{R}$ where, $\bar{R}=-\overline{1}$, $0,1 / 2,2$ (that is, negative reciprocals, logarithms, square roots, and squares). The arcsin of the square root of $x$ is another comon transformation.
8. The simple ladder of powers is a plot of $x$ against transformations of $x$ showing the direction and to some extent the rapidity with which the transformation changes the batch.
9. Transformations réexpress the batch in units that are desirabie for intended analysis. This usually means increasing symmetry; reducing outliérs and variance is also desirable.
10. A weli behaved batch has médian $=$ mean $\equiv$ midhinge midextreme, hais $\bar{s}=3 / 4 \Delta \hat{H}$. has no outíiers and resembles a Gaussian function in shape.
11. Two well-behaved batches may differ only in location and scale.
12. To standardize a weil-behaved bat̄ch; subtract the mean from each value and divide by the standard deviátion.

GMPM
II. 1. 12:1
14.2 15.0 15.7 16.6 17.2 19.7 21.1
24.2
26.2
26.3
27.2
28.1
28.4
40.8
42.2

2: Unit $=1$ death per 1000 live births

$1 *$	24
$2 *$	55679
2	14
	.
	66788

HI $\mid 40.8,42.2$
3. \#16

optional:


$$
222
$$


5. Infant mortality rates range from 12.1 t̄ 42.2 deaths per 1000 live births in Eastern Montana. Although the step is iarge enough thāt there are no outside vaiues; there are ciearly two high outliers. It is worth looking more deeply into the populations and standards of living in Rooseveit and Rosebud countiēs. The data do not particulariy ciuster, and a typical infant mortality rate is 22.6.
-

# Quantítative Methods fō Pubíc Management <br> Lécure 2-0. Introduction to Unit 2 

Introdučt́on to Unít 2, Analysis of Multiple Batches of Data, Non-Ordered

## Lecture Content:

Introduction to the objectives, problem, and notation of Unit 2

## Main Topics:

1. Spectfic Introduction to the objectives of Unit 2
2. Presentation of General Problem of Unit 2
3. Notation for Unit 2

Topic 1: Specific Introduction to the Objectives of Unit 2
I. Questions to be answered in Unit 2

1. What is ànon-ordered multiple batch?
a. A collection of two or more batches related in some qualitative way
b. There is no quantifiable ordering of the batches in the collection
2. What analyses can be done on a collection of bāt̄̄és?
a. How can we best examine or contrast the batches?
(Note: Since we are studying more than 1 batch, we can discuss comparison of batches)
b. What is, if one exists, the best unit of analysis for the examination
II. Skills to be mastered in Unit 2
3. Perceiving and recognizing multiple batches that are non-ordered
4. Organizing the batches to facilitate comprehension, presentation, and analysis
5. Comparison of the batches in the collectfon
6. Transformations to stabilize variation across the batches

Topic 2. Introduction to the Problems of Unit 2
$\bar{I}$. What is a non-ordered multiple batch?

1. Example: 1970 population of the 185 census tracts In Pittsburgh; and the 96 census tracts in Omaha, Nebraska
a. Relation: 1970 populations; by census tract
b. Qualitative aspect: 2 major SMSÁs
2. Ordered batches are associated in a quantitative manner--we can measure the relationship between the batches in some unit. These wili be considered in future lectures.
II. How can we compare the batches?
3. Minimum vaiues--Which bātch has the smallest minimum?
4. Maximum values--Whích batch has the largest maximum?
5. Median values--How do the typical values of the batches compare?
6. Spreadés-Whích bāt ch has the smallest midspread? Which has the iargest?
7. Shape--Āre the batches symmetric?

Do the batches have similar stem-and-leaf displays?
6. Units-Are the $\overline{\mathrm{E}} \mathrm{a} \overline{\mathrm{t}} \overline{\mathrm{c}} \overline{\mathrm{h}} \overline{\mathrm{s}}$ measured in the same units?
III. Is there a better unit of añalysis?

1. Are the extremes roughly equal?
2. Do the batches have similar ranges?
IV. Examples
3. Population data
a. Minfmums: 334 (Pittsburgh), 12 (Omaha, why so smài?)

$$
22 \overline{6}
$$

b. Maximums: 7910 (Pittsburgh), 12458 (Omaha)
c. Medians: 2602 (Pittsburḡ̄), 3402 (Omāhā)
d. Spreads (Midspreads): 2248 (Pittsburgh), 3051 (Omahà)
e. Bo:h batches measured in numbers of persons
f. Ōmaha batch hās lārgèr range than Pittsburgh
B. Cannot compare shāpe
2. Achievements Pretes̃t Scores for incoming students, by undergraduate studies
a. Minimum (21) and Maximum (48) equal
b. Médians: 31.5 engineering and science, 33 humanities and social science
c. Mídspreads: 16 engineering, 13 humanities
$\bar{d}$. Batches measured in number of correct answers
e. Batches appear quite similar
3. Eife expectancies for various countries by 5 national (8) groupings

Industrial ( 20 countries)
Petroleum Exporting Countries (9)
High-Income Countries (24)
Middie-Income Countries (19)
Lower-Income Countries (33)
a. Minimums; Maximums, Medians vary greatly
b: Midspreads vary roughly from 3 to 13 years
c. Batches appear quite dissimilar

## V. Conciusion

1. Need methods of comparing batches

2: Need methods of determining whether transformation is warranted

$$
227
$$

XVI.I. 175

Topic 3. Introduction to the Notation of Unit 2
I. Conventions

1. Capital letter ("X") denotes entire data set
2. First subscript ( $\bar{X}_{\bar{i}}$ ) denotes specific batch
3. Second subscript $\left(X_{i j}\right)$ denotes specific element in
a specific batch
II. Example: Life expectancies
4. Let $\mathrm{X}=$ Life expectancies for countries
5. Let $X_{1}=$ Life expectancies for Industrial countries
$\mathrm{X}_{2}=$ Life expectancies for Petroleum exporting countries
$\vdots$
$X_{5}=$ Life expectancies for Lower-income countries
6. Let $X_{11}=$ Life expectancy for Australia
$\mathrm{X}_{12}=$ Life expectancy for Austria

- 
- 

$\dot{X_{5,33}}=$ Life expectancy for Zaire
Let $X_{i j}=$ Life expectancy for country $j$ in batch $i$

22s
XVIII. 176

# Lecturè $\overline{2}-\overline{0}$ <br> Transparency Presentation Guide 

Lecture Outline Location	Transparency Number	Transparency Description
Topic I		
Section I		
1. ${ }^{\text {a }}$	1	Multipie Batch
$1 . \overline{\mathrm{b}}$	2	Non-ordēred Batches
1.	3	Topics for Unit 2
Topic 2		
Section I		
1.	4	1970 populations of pittsburgh \& Omaha
Section it		
1.	5	Quéstions to be answered for Multiple Batches
Section - V		
1.	6	Populations, severáai values indicated
2.	$\overline{7}$	Achlevement Pretest Scores
3.	8	Life Expectancies for Various Countries
Topic 3		
Section II		
1.	9	Notation
		293

Multiple Batch

A non-ordered multiple batch of data is a collection of two or more batches related in some qualitative way.

In Unit 2:
We learn to analyze multiple batches of data that are unordered.

There is no quantifiable ordering of the batches when the collection is mon-ordered

Examples of Non-Ordered Multiple Batches:

1. 1970 populations of the 185 census tracts in Pittsburgh and the 96 census tracts in Omaha 2. Test scores of men and women in this class

Examples of Ordered Multiple Batches:
(discussed in unit 3 )

1. Test scores for this year's and last year's Quantitative Methods classes on the fall final

Quantifiable by year
2. Life expectancies for countries with GNP above \$10 billion and for cendries with GNP below \$10 billion Quantifiable by GNP

Topics for Unit $\overline{2}$ :

1. Perceiving and réegnizing multiple batchés, non-ordered
2. Organizing the batches using analytic tools
3. Comparison of the batches
4. Transformations to stabilize the variation or spread

$$
2-0
$$


Pittsburgh

$\begin{array}{r} 972 . \\ 3062 . \end{array}$	¢ 9 ¢ 8 2,	1972.	391	631		
2085:	2919 :	2424.	6887	729.	7689.	1938
4167.	1059:	1712.	2565.	1919.	3689.	2437 44.
1867.	1359:	2855.	3629.	453.	1645.	2447
2471:	728	1205.	1876.	2915	$1405{ }^{\circ}$	2388.
765.	2716.	2135.	2382.	3122.	1019:	141月.
5747 :	2135:	$133{ }^{\circ}$	1349.	3628.	4115.	3153.
2155.	4247.	1472.	4730.	2542.	3469.	1895.
1253	2316.	3892.	3832 4068	1452.	3378.	1971.
2744.	3228.	3692.	4068. 4858	3945.	$2682{ }^{\circ}$	848.
5269.	2979	5148.	4858.	4614.	1645:	5306
5319.	5435.	1212.	2041.	3133 \%	4520.	6803.
1523.	4615.	3994.	2910.	2068.	1577.	$2884^{\circ}$
1985.	5203.	489	7918.	3188. 3962.	4392.	4758.
3136.	3578.	2390.	5888.	3962.	3752.	1884
4719	3509.	6796.	¢371.	3820:	2019.	1418.
996.	2607:	$2396^{\circ}$	3371.	5630.	3765.	7425.
2297.	335 :	$6235{ }^{\text {c }}$	1878.	2574.	683.	2658
3676:	1227.	1159	3121.	191:	1558.	1343
3338	2719.	345.	2379:	569.	588.	442
792.	2932.	2125.	432.	2987.	2254.	2569
113.	2487.	$1193^{\circ}$	1291	2325.	1963.	719.
289	3853 ،	3985	2897	1044.	4561 :	3669
812:	2612 ,	1648	3921	437	1399	2144
242 .	5818	6527.	$395{ }^{\circ}$	-992:	1986.	3125
327	3413.	334.	95 。	5380.	1289	2829

## Omatia

5524.	12.	3254.				
$\begin{array}{r} 4094: \\ 693 \end{array}$	1959.	2177.	3360.	2298.	3573.	3142
2693.	1212.	$2755{ }^{\circ}$	2566.	2241.	1448.	728
2648.	2542	3244.	3312.	3768.	2488.	3357
2954.	S468.	7581.	4358.	2703.	2359 $3116:$	2586.
1326	1894:	5476	3473.	$5457 \%$	2756.	4682
5322.	5859:	3248 5173	2201.	3912.	2269:	2912.
6414.	5374.	51827.	4079:	3410:	3197:	29372.
3458	6139.	-923	5782 :	3471 :	3854.	$5972^{\circ}$
5481.	12456.	5535	5136.	9366:	6952.	1315.
854.	9926.	7644.	2166 5267	6733.	4849.	7783.
4189.	3114.	$7634{ }^{\circ}$	5267.	836.	1833 .	i1793.
135.	4213.	583.	1725.	3269.	4347?	11528
				7356.		

Questions to be Answered for Multiple. Batches.

1. Minimum Data Values
2. Maximum Data Values
3. Medians
4. Spreaders
5. Shape
6. Units

Population D̄ata, séveral data values indicated.

## Pittsburgh

972.	4882.	1972	391	631.	735	1938 :
3062.	2919:	2424:	6887	729.	3689.	2437.
2885.	2973.	3712.	2585	1919.	3294.	449.
4187.	1050	1645.	3629	453.	1645.	2447.
1867	1359.	2855.	1876	2915.	1495.	2388.
2471	728.	1205.	2382	3122.	1019.	1419.
765.	2776	2135.	1349.	362 .	4415.	3153.
5747.	2135.	1330	4730.	2942:	3469.	4095.
2155.	4247.	1472.	3832.	1452.	3378.	1971.
1253.	2316.	3092.	4069.	3945 :	2692.	848
2744.	3228.	3769.	4858 .	4年1:	1645.	5389.
5269	2979:	5148	3268.	3133 :	4520.	6003,
5319.	5435.	1212.	2841.	2 268.	1577.	2984.
1521.	4615	3994.	2910.	$3188{ }^{\circ}$	4392.	4758.
1985 .	5293.	484 :	5880.	3962:	3752.	1884.
3156 .	3578.	2398	1424 :	3820.	2819.	1418.
4719.	3569.	C796:	5371.	$5630^{\circ}$.	3765.	7425.
996	2607.	2396.	187 P .	2574.	-683.	2658.
2297.	335.	6235.	3121.	791.	1558.	1343.
2670.	1227	1159.	2579.	569.	588.	442 :
3338.	2779.	345.	4327.	2987	2254:	2569.
1792.	2932.	2125.	1056.	2325.	1963.	719.
3103.	2187.	1193.	3291:	1044.	4561.	3669.
1289	3853.	3985	2857.	4437.	1399.	2144
3812	2612.	164日:	3921.	992 :	1906.	3425
6242.	5818 ,	6527.	955.	5388.	1289.	2829
3297 :	343.	334.				
		ain				

## Omaha

5524:	LSmin	3254.	3640.	2298	3573.	3142
40 ¢4.	1959.	1379.	2538.	2241.	1448	728
653.	1212	2755	1566	1780.	2408.	3357
2648:	254?	3244.	3312.	3ne4	2359	2546
3628.	5408.	7591.	$435{ }^{\text {4 }}$	2703.	3119.	46 ¢2.
2954.	5591.	5476	3473.	5451	2756.	2573
1326.	1894	3248.	2281	3912	2269.	2912.
5522.	5859.	51.73	4879.	3410	3197.	4379.
6414.	5374	5627.	57à.	3471:	3854:	5972.
149P	6139.	923.	6130 :	93E6:	6952:	7315
3461.	1245890x	5835	2466.	6733.	4049	7783.
8 854	992 S .	7E9.	5267.	838.	183).	11874
4189.	3114.	992 .	1725	3269.	4347 .	1528.
135	4213.	5888.	7566	7356.		

$$
231
$$

Achievement Pretest Seeress for. Incoming Students, by Undergraduate Major


EngineeringHumanities   and   Science
Social
Science

235
XVI.I.183

ERIC

## 

Indue:i 11		pettoleü		Mioher income		mindie-income		Lower-incume			
				Bollvia	49.7	Áataniotan	17.5				
Auseras]	71.1			Algeria	5 5月.7	Argeritina	56.2	Camrioon	11.0	Janmladesh	
nustila	70.5	truador	52.9	Brapil	$6 \mathrm{G}, 3$	Congo	91. ${ }^{\text {¢ }}$	Rourma.	12.3		
Belgium	20.6	infonesia	17.5	Chile	45.1	f.gypt	52.7	Bừüñis	368		
Candisa	726	itan	$5 ¢$	Colorhia	65.1	F1 Salvacor	58.5	cantodia	41.8		
pentark	73.3	Iram	$5 \cdot 6$	Costa prica	57.9	Ghañ	37.1	C. Arrica Rep.	24.5		
Piniand	69.1	litua	52.1	0. Prinutilic	37.7	Honduras	49.1	Chad	32.		
France	72:1	mojerin	17.4	Grepen	92.1	Ivory coast	30.0	Debiomey	37.3		
W. Germàny	$7 \pi .1$	Sandis artaba	47.3	Guatcinala	71.5	jordman	52.3	Ettopia	38.5		
Ircland	10.8	Venerizuelo	66.4	Ispar!	64.9	S. Rotes	61.9	gulliea	27.0		
Italy	70.7			jambica	NA.	Liber $1{ }^{\text {a }}$	44.9	Haiti	32.6		
Jopañ	73.1			Lerannm	N6, ${ }^{\text {Na }}$	Mniocco	5n.5	Indià	11.3		
Nether lands	73.8			malaygia	61.4	Paous N- Guinea	46.8	Renya	49.1		
Nev 2ealand	71.1			Nicatagua	49.9		59.4	Loos	47.5		
Norvay	74-1:			Nicaragoa	59.3	Philippines	51.1	Modagascar	36.1		
Portisgal	$68 .:$			Panams	54.1	Syria	52.8	Malawi	19.5		
So Alricà	65			Peru-	67.6	Thallasd	$5 \overline{6} .2$	Mall	37.2		
Sweden	14.)			Singapore	69.6	Turkey	53.7	Mauritania	41.6		
Suitzerland	72::			Spain   Tatran	68.e	5. Vietnam	50.0	Nepal	48.6		
Great mituain	72.1			Tratininad	64.:			Nepal	41.6		
United Staten	71.:			Trininad	54			pagistān	51.3		
									41. ${ }^{\text {a }}$		
				Urugcay	68.6			Swanta leone	41.0		
				Yugosiavia	$\begin{aligned} & 67 . \\ & 43.5 \end{aligned}$			Somalis	16.5		
				Tambia				Súílàña	65.9		
				.				tanzanja	47.6		
								Togo	4 ta .5		
								Uqanda	$35 . \frac{1}{5}$		
								u. Yolta	47.5		
								S. Yeman	31.6		
								Gaven	42.3		
								taire	18.8		

## Let $X$ denote the entire data set

 $x=$ Life ExpectanciesLet $X_{1}$ =Life expectancies for Industrial Countries $X_{2}=$ Life expectancies for Mitroleum Countries $\dot{\dot{x}_{f}}$ - Life expectancies for Lower Income Countria

Let $X_{y}=$ Life expectancy of Australia $=71.1$ years $x_{i 2}=L i f e$ expectancy of Austria $=70.5$ years $\dot{x}_{i, c o}=$ Life expectancy of $u . s_{1} A_{i}=1.3$ years $x_{2,9}=$ Life expectancy of algeria $=50.7$ year. $\dot{x}_{\delta_{y, 3}}=$ Life expectancy of Zaire $=38.8$ year.

QMIM

## Quantitative Methods for Pubilc Management

Lēçture 2-1. Comparison of Batches

Comparison of Batches: The use of Numeric and Graphic Methods for Comparison of Multiple Batches

## Lecture Content:

1. Discuss extensions of Unit 1 tools for analyzing two or more batches simultaneously
2. Show how these methods convey characteristics of the collection of batches

## Main Topics:

1. Comparing sevèrā batchēs of data
2. Effectiveness of these comparison tools

## Tools Introduced:

1. Parallel Stem-and-ieaf Display
2. Parallel Schematic Plot

Topic 1. Comparing Several Batches of Data
I. Basic Issue: Comparison of data

1. We know how to organize and condense single batches effectively
2. Often interesting data sets contain qualitatively related multiple batches
3. Need techniques to examine them simultaneously
4. Need to organize the batches in a consistent, reliable; and effective manner to facilitate comparison and analysis
II. Problem: Can the tṑs of binit 1 be used to analyze two ōr more $\bar{b} \bar{t} \bar{c} \overline{h e s}$ ?
5. Deveiop simple rules for extending the elementary techńques of previous unft

2: Fírst step in analysis should be organization of the batches
3. Orgañzation should be followed by a condensation ōf information
4. Spećifíc questions to be answered:
à: How do extremes of the batches compare?
$\overline{\mathrm{b}} . \mathrm{A} \overline{\mathrm{A}} \mathrm{e}$ the med $\overline{\mathrm{f}} \mathrm{ans}$ of the batches similar?
$\bar{c}$. Āre the mídspreads of the batches equal?
d. How do the shapes of the batches compare?
5. Remember the batches must be non-ordered. Órdered batches are discussed in Unit 3 where we concentrate on the relationship between the batches and the appropriate ordered scale
III. Solution: organization and condensation tools computed in parallel

1. Parallel stem-and-leaf display
XVI.I.187 , 2.11
2. Parallel schematic plot
IV. Mēthods
3. Parallél stem-and-leaf display: órganization tool
a. Example shows à pāallēl stēm-and-leaf display of thē 1970 populations of Pittsburgh and Omaha census tracts
b. Features
i. Simple idea
ii. Same features as with single batch:
A. "Face validity"
B. Retains information on individual data values
C. Flexible
iit. Easy to construct
c. Anālytic Qualities
4. Extremes easily located
ii. 5-number summaries found using depths for each batch
iii. Shapes of batches
d. Procedure
5. Choose a convenfent unit; one for all batches together
fi. Separate every data value into a stem and a leaf
ifi. Find smallest minimum and largest maximum for the entire batch
iv. Write down the stems; one set for all batches
v. For each batch; place leaves on correct stem
vi. Batches are separated in the display, with leaves placed in parallel groups
XVI.1.1882.11
e. Example: 1970 populations for Pittsburgh and Omaha
i. Convenient unit for display is 100 persons
ii. We take separate stem-and-leafs and put them side by side, with common set of stems
íí. Parailei displays shows:
A. Difference in shape
B. Difference in spread
C. Omahà outiērs (i1874, 12458)
iv. Square root transformation improves symmetry of both batches
f. Another example: Undergrad Cumulative Average for most incoming masters students by undergraduate background
(Make parallel stem-and-leaf on board) (Unit = 1)
(Note resemblance or lack thereof)
6. Parallel stem-and-leaf displays on computer:

Use STEM once per batch, specify same UNIT, LPS, HICUT, LOCUT; for each batch. Paste stems together
2. Parallel Schematic Plot: Graphical Condensation
a. Example: 1970 populations for Pittsburgh and Omaha
b. Features

1. Usēful in diścussing appearancee of batches
ii. Adequaté comparison tool for nearly all collections
iii: Computable from parallel stēm-and=leaf
c. Analytic qualities
2. Made on ordinary graph paper
ii. $y$-axis is common scale for all values in all batches
iii. Extrēmē, hinges, and medians clearly marked
d. Procedure
i. Dētērmine smallest and largest values in data set to make scale
ii. Computè 5-number sumaries
iii. Drāw a simple schematic plots; one per batch, in parallel, using common scale
e. Another example: Life expectancies for countries,(5) classified as to their "wealth"
i. Schematic shows differences in spread and location
ii. Petroleum similar to middle income, but not in midspread
iii. Downward trend evident
f. Schematic plots, in parallel; on computer:

Use function BOX with all dara files as arguments

Topic 2. Effectivenēss of these Comparison Tools
I. Basic ls̄ué: once condensed iño parallél schematic plot how much can we learn about the batchés ?
II. Try to answex:

1. Are there any outifers in the data set ?
2. How do the batchès compare with respect to shape ?
3. is thére any obvious relation among the medians or midspreads ?
II. Methods

Parallel stem-and-leaf displays and schematic plots answer these questions
(Preseñ severai other exampies of unordered multiple batches and díscuss appearance of éach)

QMPM

Lecture 2-1
Transparency Presentation Guide

Lecture Outliñe Location	Transparency Number	Transparency Description
Beginning	1	Lecture 2-1 Outiine
Topic 1		
Section IV		
1.a	2	Parallei stem-and-leaf of populations
1.è.i1	2	Parallel stem-and=leaf of populations
1.e.iv	3	Parallel stem-and-leaf of square roots of populations
$2 . a$	4	Parallel schematic. plot of populations
2. $\overline{\mathrm{f}}$	$\overline{5}$	Lífe expectancires for countries
2. $\overline{\mathrm{f}}$	$\overline{6}$	expectancies
2.f.1	7	Parallel schematic plot of life expectancies

$$
2.15
$$

Lecture 2-1

Comparison of Batches:
The use -f Numeric and Graphic methods for comparing batches.

Lecture Content:
Extensions of the tools of Unit 1 te facilitate the analysis of two or more batches simultaneously.

Main Topics:

1. Comparing several batches
2. Questions to ask of a batch.

$$
\begin{array}{r}
246 \\
\text { xviII. } 193
\end{array}
$$



2-1
2.17
[3]
Square Rotsof inx posbungh omaha Populettons Parainel stem-and-Leaf
(unif-1)


Hitl



> Panilled Eshenativ plots, Mpo Populations, by Censuatract, Poh. fommia


$$
2-1
$$

XVI.I.196
MAT_IMD_LIFE


72.
73.2
$? 20!$

69.8
71.1
71.3

720
74.
?
hat_PETAC_LIFE
$50.7 \quad 52.5$
19.5
50.
51.6

52:9
37
66.4

NAT_MIINC_LIFE

67.2	60.7
69.	79.5
59.3	64.7
68.6	67.7

MAT_MIDIAC_LIFE
49.7
30.

52.8

WAT_LCEINC_LIFE

39-5	Ha	42.3	36.8	430	34.5	33.
37.3	38.5	$29^{\circ}$	32.6	41.3	49.9	47.5
36.	38.5	37.2	1.	10.6	110	$51 . ?$
410	41.	38.5	65.9	47.6	10.5	35.1
47.5	31.6	42.3	42.3	38.8		
						2-1

XVI.I. 197

Life Expectancies of Countries, Parallel Stem-and-Leaf $\quad[6]$


Module I

## Bife Expectancies by Nation, Classified into S_Baches



Quantitative Methods for Public Management
Lécture 2-2. Transformation for Stabilizāion of Spread

Transformations for Stabilization of Spread: The Use of Various Algebraic Transformations to Equalize Spread Among Batches

Lecturé Content:

1. Discuss need for transformation
2. Introduce method of detēmining à good transformation

Main Topics:

1. Necessity of transforming a multiple bātch
2. Usē of médians and midspreads in finding àgood transformation

Tools introduced:

1. Median/Midspread Plot

## Topic 1. Necessity of Transforming a Multiple Batch

I. Basic issue: Comparison of batches is difficult if batches differ greátiy in spread

1. We know transformations are helpful in changing the shape of single batches
2. When more than 1 batch is being analyzed, comparisons are easier if batches are similar in spread
a. Example: Parallel Schematic plot of life expectancies for nations
3. Difference in spreads in the 5 batches mākes conciusions concerning location difficult

1i. Spreads are roughly equal; except for industrialized nations
b. Example: Paraliei Schematic of Infant Mortality for nations

1: Lócations similar, spreads vary enormously
11. if we balance the spread; will locations still be similar ?
c. Example: Parallel Schematic of Per capita Income for nations

Note relationship between location and spread
3. Íf comparisons of location are to be made; task is easier if spreads are equalized
4. We transform batchès to equalize or "balance" thé spread
5. If comparisons of spread are to be made, transformation is unnecessary; mérely "line up" plots so that médíans are equà; and compare spreads
6. In conclusion, how much cf the difference in iocation is due solēy to location, and how much is due just to difference in spread ?
II. Problem: Want our schēmatic plots to tell their story as clearly and simply as they can

1. Symuetry of spreãd within batches is helpful for sumarizing single batches
2. Balance of spread between batches is essential for comparisons

IIT. Solution: Choose transformation to achieve equalization in spread

1. The transformation will usually promote symetry within bātches
2. As with transfomations for symetry; the search for a good transformation is exploratory, and even the best transformation may fail to equalize spread completely.

Topic 2. Use of Medians and Midspreads in Finding a Good Transformation

I Basic Issue: How do we find the best transformation ?

1. We understand that transformation may be essentiā in comparing batches
2. Since transformation affects the relationship between the medians and the midspreads of the batches; how do we use these values to find the best transformation ?
II. Problem: How do we let the medians and midspreads tell us the correct transformation
3. We are searching for a consistent relation between medtans and midspreads
4. The best way to study the rē lationship of the médians and midspreads is with à scattērplot
5. Could line up schematics; but a scatterplot is more clear
6. Besst to look àt a scattérplot of log (Mediān) vérsus $10 \bar{g}$ (Midsprēad), one ordered pāir pēr batch
7. A innear scatter implies transformation is necessary
III. Solution: Examine slope of the log(Median) vs. log (Midspread) scatterflot
8. Supposē ēcāttērplot wās close to lineã with an "eyēbāl" slope of $p$
9. Correct exponent for the transformation $Y \equiv X^{R}$ is $\bar{Y}=(1-\bar{p})$
10. Slope $\ddagger$ Ł̄1ls how far down the "ladder of powers" to move

$2=$ negative reciprocals ( $1-\bar{p}=-1$ )
$1 / 2=$ square roots $(1-p=(1 / 2))$
$0=$ no transformation (1-p $=1$ ) $-1 \equiv$ squares ( $1-\bar{p}=2$ )
IV. Method: Lōg icsian) $/$ Log (Midspread) piot
‥ Exampié loc: median / Lō midspread pió for Per capíta incomes óf rouitries

## 2. Features

a. Useful in determining a good transformation to compare batches
b. Scatterplot made from 5-number summaries of the batches
$\bar{c}$. Relationship of $\quad$ determine the cu and log midspreads qert, $r$, for the transformation
3. Analytíc Qualitiés
a. Slope of the .ratil .. decermines $r$
b. Relationshíp becween i and slope; $p$; is $\leq=(1-p)$
c. Random scatter ( $\mathrm{p}=0$ ) implies no trar.sformation
d. Plot made on ordināry graph paper
e. If collection has fewer than 4 batches; miy not have enough points to dētērmine slope
f. Log(median) vs Log (midextreme) (or other measurēs of spresd) plot may be used to determine transformation
8. For "well-behaved" batchēs, log(mean) vs. log(standard deviation) is acceptable = note that stancardizing obscures differences in levē
4. Procedure
a. Compute 5 -number summaries for the batchés and find midspreads
b. Compute the logarithms of the medians and mídspreads
c. On a piece of ordinary graph paper, plot log (median) as $\bar{x}$ and log(midspread) as $Y$, one point for each (6) batch; or use log-log paper and plot median vs. midspread directly
d. Find a siope by choosing two representative points, one at left end of scattē ( $X_{L}, Y_{1}$ ) and one at right end of scatter ( $\left.X_{R}, Y_{R}\right)^{\prime}$. Slope $=\left(Y_{R}-Y_{L}\right)$ ) $\left(X_{R}-x_{L}\right)=\bar{p}$

255
XVI:I,204
e. If preferred, an "éyeball slope" may be used--a slope fit to the data by eye
f. Correct exponent of transformation, $r$; is (1-p)
g. With new exponent, find transformation of 5 -number sumaries
h. Makē nēw schematic plot of transformed data to compàre batches
5. Anothèr examplè: Percentagè of Individual Tax Returns audited in Fiscāl 1974; by state
a. 4 regions in the U.S.
b. Paralíel stem-and=1eaf shows slight difference in spread
c. Log(médian) vs. log(midspread) plot indicatés $\mathbf{r}=-52 / 3$, a strange transformation
d. Best left in original unit
6. Another example: Percentage of population illiterate in 1960 by state
a. Same 4 regions used
b. Paraliel displays show differences in both location and spread
c. Plot has slope of -0.60. $1-(-0.60)=1.6$, about 2. Try squares
d. Schematic transformed data shows equalization of spread (except for Atiantic)
7. Anothér example: Percentage of population ilifiterate in 1900; by state
a. Batches differ greaty in spread
b. Unable to determine siope; is it 1 or 3 ?
c. Try both -1/ ( $\mathrm{x}^{2}$ ), and logs
XVI.I.:35

$$
259
$$

d. Negative reciprocals squares fail miserably
e. Logs quite good
8. Log Medłan/Log Midspread plots constructed on computer:
a: Use SUMMARY to obtain Mediāns and Midspreads
b. Input these into 2 separate files
c. Take logs with REEX
d. Plot with PLOT

Lecture 2-2
Transparency Presentation Guide

Lecture   Outine   Location	Transparency   Number	Transparency Description
Beginning	1	Lecture 2-2 Outine

Topic 1
Section I

$2 . a$	2	Parallei Schematic plot of Life Expectancies
$2 . \bar{\square}$	3	Parallel Schematic Plot of Infant Mortality
$2 . c$	4	Parallei schematic plot of pēr cápitá Incomés



GMPM

Lecture $\overline{2} \cdot \overline{2}$

Transformations for Stabilization of Spread:
The use of various algebraic transformations to equalize spread among batches.

Lecture Content

Discuss need for various transformations and introduce a method of determining a good transformation for a batch .

Main Topics
i. Necessity of Transforming a multiple batch.
2. Use of median's and mid-spreads to find transformations.

$$
262
$$

Life Eipectancies by Nation, Clessified inte 5 Datches:


$$
2 \mathrm{XVI}_{\mathrm{XVI}} .209
$$

Infant Mortality by Countries, Clossified into Batahes. [3]


254
2-2

Pertapita Income for Countries, Chasified indo Batenes


Per-Capita Incomes for Countries
5 Number Sumparies


Lag Median us. Log Midspread for Per Capita Incomes s ${ }^{[6]}$


Representative Points

$$
L=(1.48,9.68) \text { and } I=(3.53,3.25)
$$

$$
\text { slope }=\frac{3.25-1.68}{3.53-1.98}=1.01=p
$$

R, exponent for transformation, $=7-7.01 \approx 0$
take logs

$$
\begin{array}{r}
267 \\
\text { xvi.i.213 }
\end{array}
$$

QMPM

Fer Capita Incomes for Countries, Parallel Schematic Plot; Los Scale.


268
2-2

## Areéntege of Individual Tax Returns Audited in

## Fifes 1974.

## Atlantic (ia states)



South Dakota
$1.5 \%$
North Dakota
7.8
2.0

Illinois
Iowa
wisconsin
Nebrisita
7.3

27
2.3

Missouri
2.1

## time <br> .

Wyoming
7.8

TEXAS
3.1

Arkansas
2.2

Oklahoma 2.3
2.5

Western (10)
Alaska
$2.7 \%$
Idaho

2.7

California
2.5

Arizona
7.1

Oregon
3.4
utah
2.2

Washington 2.0
$\%$



Atlontic

New York	2990
Maíne	1.3
Messachuse $\mathrm{Hz}^{\text {cos }}$	2.2
Vermont	1.1
ConnecFicut	2.2
New Hampshire	1.4
Rhode Island	2.4
Margland ip.C.	1.9
New Jerseg	2.2
Pentssyuapria	2.0
Virgimia	3.4
Delaware	7. 9

$$
\begin{aligned}
& \text { Southeast ? } \\
& \text { Central }
\end{aligned}
$$

Georgia	4.5
alabama	4.2
South Carolina	5.5
Northlarolina	4.0
Mississippi	4.9
Florida	2.6
Tennessee	3.5
Ohio	1.5
Michigan	1.6
Indianna	1.2
Kentuaky	3.3
West virginia	2.7

## Midwesti Southwest

South Dakota 0.9
North Dakota 1.4
Elliñis 1.8
Zown O.F
Wisceñín 1.2
Nebraska 0.9
Missonit $\quad 1.7$
Minvesote 1.0
NEw Merice 4.0
0 U0ming 0.9
colorado 1.3
Texes 4.1
grkansis 3.6
Gouisioma 6.3
OKlahória 1.9
Karsas
0.9

## Western

alaska	3.0
Idaho	0.8
Montana	1.0
Hawail	5.0
Calicomia	1.8
arizoma	2.8
Oregin	0.8
Neuada	1.1
utah	0.9
Washington	0.9

$$
270
$$

Module I
Parallel Schematic Plots for Squares of
Percent Illiterate Data $[10]$


$$
271
$$

$2-2$

Illiteracy of the Apulation，Percentages by state 1900．

P隹保保



Midwestif Southwest
South Dikota
North ankota
Illimois
Iowa
Wisconsin
Nebraska
Missouri
Minwesota
New Mexico
woming
colorodo
Texas
A－karsas
Louisiana
Oklahoma
Kansas
5.8
6.1
4.8
2.7
5.4
2.6
7.0
4.6
35.7
4.4
4.5
15.6
21.3
39.6
11.7
3.3


279
x+1.
$2-2$

QP

Log Transformation for 1900 Percent Illiteracy



$$
274
$$

## Homework

Unit 2

1. Thēse data are from a study designed to determine whether varying the report of the results of a controversial psychological study can influence judgements about the ethics of the research.

Thrè eg groups of subjects (high school teachers) read summariēs of the Milgram (1963) obedience study [Milgram; S. "Behavioral Study of Obedience", Journal of Abnormal and Social Psychology, Vol. 7, 371-378]. These sumaries were identical except for the réporting of the results. One group of teachers read the actual results of the Milgram study (Actual Resuits group): One group read that nearly all of Milgrar: 's subjects delivered the highest shock available to the confederate (Many Comply group). A third group read that nearly all of Milgram's subjects refused to delivér the highest shock to the confederate (Many Refuse group).

After reading the report, the teachers answered a number of questions. Among these questions; there was a seven point scale on which the teachers were asked to rate the ethics of the study: (The higher the rating, the more ethical the study was believed to bé).

Compare the three groups and summarize the differences among them.

THE DATA:

| Actual Results: | $6 ; 1 ; 7,2 ; 7,1 ; 7,3 ; 4 ; 1,1 ; 1,6$ |
| :--- | :--- | :--- |
| Many Comply: | $3 ; 1 ; 3 ; 7,6 ; 7,4 ; 3 ; 1 ; 1,2 ; 5 ; 5$ |
| Many Refuse: | $5,7,7,7,6,6,6,6 ; 7,2,6,3,6$ |

$$
275
$$

2. An experiment on nipples for baby bottles comparē different nipple designs--the conventional one having a medium circular hole and a new one having a teminai slot. 11 inches long. A special bottie permitted an uñestricted flow of milk, and the new nipple was positfoned horizontally and vertically to détermine the effect of orientation: For 24 babies, the volume (in milliliters per suck) was as follows:

Medium
Hole

0.81
0.50
0.78
0.43
0.50
0.71
0.71
0.34

Siot
Vertical

1. 33
2.10

ま. 50
1.60
1.70
2.00
1.21
1.35

Siot
Horizontal
0.92
0.78
1.20

1. 00
$0 . E$ :
NA
0.80
0.5 c
(a) Compae these batches with parallé schematic plots.
(b) Trānsform the batches to stabilize the spread oi the values.
2. Suppose we collect measurements of FEV (Forced Expiratory Volume) from individuals that work at the same factory and are of the same age, sex; and height. FEV is a measure of pulmonary function: We subdivide these indivfduals by smoking status into the groups: A=never a smoker; $B=$ exsmoker; $c \equiv$ present smoker, currently smoking less than two packs per day, $D=$ present smoker, currently smoking at least two packs pēr day.

Thē dātà àrè ās follows:
A: 260, 275, 260, 290
B: 232, 230, 246, 245
C: 224, 202, 262, 225
D: 180, 195, 202, 175
Compare the Groups.
276
4. When the trial os Dr. Benjamin Spock and his associates beqan in 1968; the defense chailenged the list of prospective furors bēcát:se only $9 \%$ were womeñ. A more detailed examination of jury vonires in the $U$. S. District Court for the District of Massichnsetts revealed that in veníres summoned for trials before the six colleagues ór the trial judge between 4 April, I966 and 22; October 1968; the percentages of women were:

Judgè A: $40 ; 30,16,3 \overline{5} ; 50$
आdge B: $36,32,32,2 \overline{7}, 2 \overline{9}, 45$
Judgè C: $34,30,32,29,24,28,20,35$
Judgè D: 24, 30
Jưgē E: 33,$36 ; 28,20$, $1 \overline{8}, 22 ; 40$
Jrdge $F: \quad 22,21,31,27,17,29,26 ; 29,34$

While Ehose for the trizl judge w:
Triai Judge: $16,18,14,6,18,1 \overline{5}, 9,24$
(a) Comparc these batches of percentages both numerically and graphicaily.
(b) Combine Judges $A-F$ into one binch and compare the triāl judge with it.
(c) Which comparison is most effective ? Why ?
5. Four groups of students were subjected to different teaching techniques and tested at the end of a specified period of time. Their scores are shown below:

Techniques

1	2	3	4
65	$7 \overline{5}$	59	94
87	69	78	89
73	$\overline{8} 3$	67	80
79	81	62	88

Compare batches (transformation isjunneccessary) to determine

QMPM
6. The stem-and=leaf display below gives the percentage of families in ecch Mabiattan poifee precinct where combined income in 1970 was less than $\$ 4,000$. (Data from New York Times, March 30, 1973)
(a) Write down the zive number summary for these data, and calculate

$$
\hat{s}=3 / 4 * \text { Midspread }
$$

(b) What evidence (if. any) is there in your answer to (a) that this batci could be máce thore symmetric by transformation.
(r) The lower hinge, median, and Foer inge for precincts in the Bronx, Brookiyn, quér, Ctaten Island are given below. Combine these asta with that from Marhattan to find a transformation that would equalize the variability in the five batches.

Percent amilies with Income $<\$ 4,000$

Manhattan	0	5	6	7	9					
Unit $=$	1	0	2	2	4	5	5	6	7	9
$10 \%$	2	0	3	6	7	7				
	3	1	5							


	Number of Precincts	Lower   Hinge	Median	Upper Hinge
Bronx	11	11-1/2	17	30
Brook 1 yn	23	12-1/2	19	24-1/2
Queens	14	6	9	11
Staten Island	3		6	8

$$
29
$$

Homework Unit 2
Solutions
i. Léter Value ispays


Schematic Plots


$$
279
$$

For the group that read the actual results, there were a wide range of opinions; some thought it was ethical; and others thought that it was not:

For those who were told that many complied, opinions still were split, but more people rated the experiment with middle values ( $3^{\prime} s ; 4^{\prime} s$; and $5^{\prime} s$ ) indicating that they questioned or were uncertain about the ethics of the experiment.

The most interesting result was for the group that was told that most people rerused to administer the shock. Alnost all of this group felt tioz the experiment was very ethical:

Thus; as long as participants refuse to administer a shock; the eachers felt the experiment was ethical; but when some were told that shocks were administered, they began to question and disapprove of the experiment.
2. Letter Value Displays

A) Parallē Schematic Plots


251
xVI.I. 227 $\qquad$
$\qquad$ こ =

QMPM

## B. Mid Sumaries

Median	.61	1.6	.88
Midhinge	.61	1.6	.875
Midextreme	.57	1.65	.925

```
 From the parallel schematic plots and the midsummaries we
can se: that no transformation is called for.
 Clearly, the nipples with a terminal slot are better, with
a vertical orientation being the best.
```

ettèr Value Disriàs



Rarailei Schematic plots


Thēre appears to be a definite difference between the nonsmokers, ex-smokers, less than two pack smokers, and at least two pack smokers. The more one smokes; the lower the $\bar{F} . \bar{E} \cdot V$. Howerer, before you could say much about how of a difference there is, nore data should be obtained. Four observations is not enough.

QMPM
4. Sort

A	B	$\underline{C}$	D	E	F	T
16	27	20	24	18	17	6
30	29	24	30	20	21	9
35	32	28		22	22	14
40	32	29		28	26	15
50	36	30		33	27	16
	45	32		36	29	18
		34		40	29	18
		35			31	24
					34	

Numerical comparison

		min	max	
A: menge				
A:	mediān $=35$	16	50	
B: median $=32$	27	45	0	18
C: median $=29.5$	20	35	15	
D: median $\equiv 27$	24	30	6	
E: median $\equiv 28$	18	40	22	
F: median $=27$	17	34	17	
T: median $=15.5$	6	24	18	

Stem-añóléaf Displays Judges A-F combined

${ }^{1 *}$		unit $=1$			
1.	678				
$2 \%$	0012244	$\mathrm{N}=37$			
	6778899				
3\%	0001222344		29		
	5566	H 9	24	29	34
4*	00 5	E 1	16		50
5\%	0	- - - -			

35

Stem-zi.ㄷiczi all judgès A-F\&T

0٪	69
1*	
1	566788
2*	00122444
2 .	677889999
3才	0001222344
3.	5566
4*	00
4.	5
5*	0

$$
n=45
$$



While the individual comparison of éach judge with the trial judge shows that the trial judge's typical percentage of women was lower than the other judges, I think the larger group comparison is more valid. This is because of the total numbers involved.

The omparison of the two boxplots clearly shows that about $75 \%$ of the trial judges venire's had a lower percentage of women than the combined group of judges. It also shows that even when the greatest percengage of women were in the trial judé's venirs, 75 percent of the combined grouping had more women.

Both comparisons raise questions concerning how juries are chosen, since mose of the venires had less than $40 \%$ women.
(1MPM


250


QMPM
5.

1
65
73
79
87


2
69
75
81
83


3
59
62
67
78


4
80
88
89
94


	median	min	max	range
1	76		65	87
2	78	69	83	22
3	64.5	59	78	14
4	88.5	80	94	19
4			14	


xVI. $\overline{1} .234$
6. $n=20$
(a) $\bar{M} 10 \mathrm{~h}$

M	Oh		15.5	
$\mathbf{H}$	6 h	11		
E	1	5		24.5
				35

$$
\hat{S}=3 / 4(24.5-11)=3 / 4(13.5)=10.125
$$

	Bronx	Brooklyn	Queens	Staten Is.	Mänhattān
UH	30	24h	11	8	24.5
Median	17	19	9	6	15.5
LH	11h	12h	6	5	11
Midspread	18.5	12	5	3	13.5
Midhinge	20.75	18.5	8.5	6.5	17.75

(b) midhinge $\neq$ midextremes $\neq$ median $\neq$ mean
$17.75 \neq 20 \neq 15.5 \neq 17.3$
batch doesn't trail off at both extremes; so it might be made more symmetric--however the ratio of maximum to minimum value is less than 20 which would seem to indicate that transformation might not help. Also; though there were differences in the $d \in f f e r e n t$ measures of typical value, they are not very large differences.
(c) Transformation to equalize variability in the batches--negative reciprocal square root of $x_{i}$.

Bronx	Brooklyn	Queens	Staten Is.	Manhattan	
-. 18	-. 20	-. 30	-. 35	-. 20	UH
-. 24	-. 23	-. 33	-. 41	-. 25	Median
-. 29	-. 28	-. 41	-. 45	-. 30	LH
.i1	. 08	.il	. 10	. 10	Midspread

## QMPM

Quiz; Unit 2
WRITE Ai.i. AVSWERS ON A CLEAN SHEET OF PAPER
Part I: Answer the following questions briefly and generaliy.

1. What is $\mathfrak{i}$ : jrdered multiple batch ?

2: How do we best compare a collection of related single batches ?
3. Why would we consider a transformation of a multiple batch ?
4. How do we determine the "best" transformation for a muitifle batch ?
5. If a multiple bātch consisted of 2 well-behaved batchēs and it was determined that a transformation was necessary; what statistics of the batches would we use to find the "best" transformation ?

Part II.

1. Given below is a data set of median annual incomes of individuals with doctorates employed in education (academia), govermment, and industry in 1964.

Area of Employment

Area of Doctorate	Education	Govermment	Industry
Agriculture	\$11,100	\$11;500	\$12;000
Biology	10,500	11,900	14, 000
Earth Sciences	9,900	11,700	13;500
Mathematics	10,300	15,100	17,000
Chemistry	$\overline{10}, 0 \overline{0}$	12,700	14,000
Physics	11;000	13;800	16,000
Psychology	10,000	11,500	15,900
$291$			

XVI.I.236

Using the information on the batches given below, determine the best transformation for the batches: You need not carry out the transformation:

	Educaṫon	Government	Industry
E	\$ 9,900	\$11,500	\$12,000
H	10,000	11,600	13,750
M	10;300	11,900	14,000
H	10,750	13;200	15,950
E	11,100	15,100	17;000
midspread	750	1,600	2,200
109 H	4.00	4.06	4.14
108 M	4.01	4.08	4.15
10 H	4.03	4.12	4.20
10 midsp	2.88	3.20	3.34

2. On the next page is a detail; or small section of a display given in the book Profiles in School Support; 1969-1970.
A. Briefly discuss the "analytic" features of the display: what kind of display is it, what do the various lines of each box mean, etc., as explained in the aforementioned book.
B. Compare the 4 states among themselves.
C. Compare each state separately with the United States.

292
XVI.I. 237

Expendetures pir Classesom uñit, 1069=70.


Now Jusey

obsnecticent

pennsyruma


$$
294
$$

```
Unit 2 Quiz
 Solutions
```

PART ONE

1. An unordered mitiple batch is a set of batches which have each been collected in a consistent manner, containing similar values having a non-quantitative relationship to one another:
2. We c̄an bést compare rélated single batches through the use of parallé stem-and-léaf diagrams and parallel schematic plots. We can also use the five number sumaries. But we must be cautious to control spread via a transformation if necessary.
3. Transformation in a mitiple batch is used to equalize the spread and remove a possible consistent relationship between spread and typical value in the batches.
4. The method for finding the "best" transformation consists of taking the logarithm of the median and midspread (sometimes the $\Delta$ between the extremes) of each batch and then
 ifne is drawn to approximately fit these points with slope = p... The best transformation for the data will be found by subtracting prom one and raising (or lowering) the original dā́a by a power equai to that difference.
i.e. $\overline{\mathrm{x}} \rightarrow \overline{\mathrm{X}}^{R}$ whére $\mathrm{C} \equiv 1-\overline{\mathrm{p}}$
5. The mean and the standard deviation

## PART TWG

1. The siope of possible lines to fit those points vary from -2 to -3. This indicates that transformations could range on the ladder of powers from $R=-1$ to $R=-2$ (negative reciprocals or negative reciprocals of the square root.) Take $\left(x_{1}^{-} ; y_{1}\right)=(4.01 ; 2.88) ;\left(x_{2} ; y_{2}\right)=(4.15,3.34)$

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3.34-2.88}{4.15-4.01}=\frac{-46}{.41}=3.29 \quad x \equiv 1-3=-2
$$

QMPM

2. A. These styles represent boxplots, but they are not exactly as we have defined them. The solid line extends from the 2nd percentile to the 98 th percentile. The outer edges of the boxes represent the level of expenditures for the 25 th and 75 th percentiles. The middle line in the box is the level of expenditures at the 50th percentile.

Percentiles involve dividing a distribution into 100 sections with an equal number of observations in each section. Therefore, the 50 th percentile is very similar to a median in that half of the observations are found on either side of it So the incernal box is like a boxplot but the whiskers āre not.
B. No consistent increase in spread with typical value: Distributions quite asymetric. Nonetheless, seems to be a c’āar trend of incrēāing typical value.
C. New York; New Jersey and Connecticut all have greater expenditures in $75 \%$ of their classrooms than the national 50th percentile expenditures Pennsylvania expends more in sidghtly over $1 / 2$ of that state's classrooms than the 50 percent of the nation as a whole. One rather interesting thing to note is that some percentage $(2<x<25)$ of New York's classrooms expend more than $98 \%$ of the national number of classrooms.

The distance from the 25 th percentile to the 75 th percentile is greater for the national figure than for any of the state figures: New York is very different from the Nation. New Jersey and Connecticut are too, with Pennsylvania most similar.

Some Principles of Graphics for Tables and Charts

This brief handout discusses some ideas on the effective use of graphics in technical papers and presentations: Some of these principles are due to Edward Tufte; whose lecture on 23 April 1976; given to the Statistics Department at Harvard University, is the basis for this discussion:

We will discuss the 7 principles:

1) Less is more
2) The 3 purposes of graphics for communications
3) Smail muitipies are useful
4) Think about page arrangement
5) Integrate text añ graphics
6) Three-dimensional graphics are special
7) Graphics should have "rough drafts.".

These principles wili be introducéd by means óf various exampiés óf graphics taken from many sources, including The wall Street journal, The New Yorker and Scientific American: The principles are partly subjective-what we think constitutes a good grāphic may nō agree
 Vísuai añ works of art; therre is à subjective aspect to their
 and can turn bā díspłays into good ones, íf they are foliowed:

Principie it: 亡ess is More
Never try to çrowd too much information into a display. Two ōr three graphićs are much easier on the eye than one graphic. If you feet that the display under development contains too much information and might over ioad your readers' circuits, make two or three

 $\bar{t} \overline{\mathrm{~h}} \overline{e n}^{\text {remaindēr. Remember, graphics must be interpretable by the average }}$ féilow. A Fēadē s̄̄̄ould not spend the majority of his/her time trying to déciphē the tabies and charts contained within your paper.

Figure 1 is a histogram, where the bars are broken into various components of personal expenditures; by percentages. There is just the right amount of information in this display. Any additional bars, or additional categories of expenditures would make this display uninterpretable. In contrast, we present figure 2, a bar chart, with the same construction as the histogram in Figare 1. The wild plaids
 are too many cities included here. Cān you find additional dis̄ agreeable features.

Figure 3 is an example of a bā chāré, a display similar to a histogram, but with a horizontal axis referring to various chārac= teristics about the data set. The axis does not have a scāle as with a histogram. This bar chart ís difficult to examine because of the curved bars; although it may be pleasing to the advertising firm that constructed it. The moral of the figure is: Do not try to make your display too ornate if this excessiveness detracts from its comprehension:

We have included 2 other displays from The Wall Street Journal thāt are quite good. Figures 4 and 5 are both bar charts that are pleasing because of their simplicity; and their effectiveness in conveying their message. Notice; however, that the border around Figure 5 is unnecessary--the arrow is catchy, but the numbers should speak for themselves.

XVI.I. 244

Figure 2
 $\$$ ctires ove one ritioon popiditioa


## Aglobal view of Beecham helps to account for 13 years of record profits

Beecham is an intemational company Not only have its trading profis been increasing continuously for 13 years Juss es important the number of countries in which these profits are earmed has been increasing at the same time Last year the largest share earned in any one councry which happened tobe the UK - w as onls 199 per cent of the total.

So what are the highlights of 1975/76

- Horid-wide sales sil 0114 milhon Lint $\$ 2324$ million or 29.8 per cent on $197+1 / 5$
Wrading profi $\$ 1 \$ 2$ million Upby $\$ 539$ million or $4+1$ per cent on $19 i+175$
* Pre-taxprofi \$1028million Upbs 8523 million: or 473 percent on $19747 \%$


## Beecham-Ān International Company



Pigure 4



 min mitan



Im n mate ancuilone creonempermote of Mol mat io sumpo or ony Chbemp tandill lom the
 Hannation

 - emeroy boring and
 1040
 orband tompatio pionn miny . Tixumolion -

 iman you ion menerse inal
 avilits lu. Bropectitiont Qoemen an incosco.ent
 tump in mo coole is me



CHROMALLOY


-10
0 in $4=0$ mh
pigure $5:$

THE WĀLl STREET JOURNAL, Twedoy, Juty 27, 1976

Principle 2: Graphics are for comunication
Graphic displays, as a substitute for oral or textual communication have 3 purposes: exploration; reconstruction; and decoration. Displays should be truthful and not misleading=-see How to Lie With Statistics by Darrell Huff for some very "dishonest" graphics. Graphic tools should attempt to reconstruct reality and ailow the reader to explore more fully the underlying situation in addition to decorating otherwisē "dull" presentations.

Figure 6 is an example of a blot map; occasionally a very deceptive $\bar{g}$ raphic device. In a blot map; we darken all counties or śtatē thāt possess a certain characteristic. The blot map reproduced here was taken from The New York Times; and presents all the countiē with 15 percent or more positive net migration of persons 60 years and older between 1960 and 1970 . These 206 counties are supposedly the fastest growing retirement communities. The encircled counties in California; Arizona; Nevada; Utah, and Wyoming, listed at the bottom, include $40 \%$ of the shaded-in area on the map: however, only $0.14 \%$ of the people over 60 years live in these counties! The title of the article "More Elderly are Retiring in the North", is not at all verified by this map: One draws the incorrect conclusion that the Southwest U.S. is more popular than the remainder of the country, with the possible exception of the retirement haven, florida. The moral is: Blot maps based on counties are misleading because of the large number of empty counties.

We also include a very goō dísplay, Figure 7 , tāken from Scientific American; which very éfectively communicatē information about nuclear devices.

Principle 3: Small Multiples are Useful
Graphic displays can bé quite small. Many smāll displays, ārānged on page, can be quite effective in commicating your message. Figure 8 shows a $12 \times 5$ array of histograms presented in a good manner.

In a humorous véin, figure $\overline{9}$ is an example of multivariate "faces", developē by Herman Chernoff. Thēse small figures are used to differentāe observations from a larger population when more, than one measurement on each observation is available. In a faces display each phyścal feature of a face is controlled by the value of a measurement. This is quite different from a display which puts faces on figures simply to portray the author's feelings about displayed values (see the light bulb example in the section "Principle 5").

Figure 6
New fork Timés, February 1, 1976


Califórnia	Arizona
Amador	
Calaveras	Mohave
Inyo	Yavapai
Mariposa	Yumáa
Mono	Ciaham
Tuolumne	

Ucah
Washington
Wyoming
Campbell

Nevada
Chuuchill
Campbelil

Figure 7








110







Source: Herbert F. York, "The Debate over the Hydrogen Bomb;" Scientific Amcrican, 233 (Oćcober; 1975); p. 110.

308


Benthic Inveriebrate Populations in Pugat Sound, hashingion, "Ecolosicaí


Figure 9


CES: 4



035: 39


COS: 42


311

Principle 4: Think about Page Arrangement
When preparing graphics for publication, or written presentation,
it is worth spending several minutes considering the arrangement of your displays on the printed page. The following display nicely summarizes the fourth principle of good graphics.

(Figure 10 is an example of a cute blunder from The New York Times:)


Correction
In last week's Revicw, a drawing
of the fiñack whale appeored this way:


The drawing should have appeared this way:


The Revicw ragrels the error. Whales, however, do spend iust about os much of their time suim. ming on their backs as they do right side up.


New York Times; July 6; 1975 .
XVI.I. 253

## QMPM

Principle 5: Integrate Text and Graphics
Modern production of printed inaterial has forced written text and graphics to become divorced from each other. The placement of all figures and tables at the end of the paper with wonderful announcements such as

Tabie $9 \overline{8} 3$ goès about here.
does not aid the confused rēader. Having to leaf through an entire paper to find a figure essential to the development of a hypothesis can be quite detrimental. Why do figures and tables have to be alienated from the text? This example from The New Yorker shows good integration.

## Profns

Over the past fifteen jears nur profits hate increased by a mindest is million dullars. The dingran below

depiets, from left to rignt, thice light bults of steadily increasing size.

$$
313
$$

## Principle 6: Three-Dimensional Graphics

Graphics are in essence two-dimensional beasts since tiney must be reproducible on the printed page. However, as Figures 11 and 12 vetify, graphics can be drawn as two-dimensional approximations to three-dimensional figures. The thing to remember, and we can label this Principle 6a, is: Professional artists can help by making good drawings; especially figures that are not easily drawn by hand.

But be careful! Figure 13 is a poor example. In this figure, ordinary histograms have uselessly been made three-dimensional. This is also a poor example of a histogram. One must ask whether it really is a histogram.

Principle 7: Rough Drafts
This principle is simply stated: Produce as many drafts of your graphic displays as you do of your text. Throughout this discussion we have equated graphics with the written word; consequently, it is to your advantage to polish your figures and tables as you polish your text.


FK.. S. Soll ténīūe of A horizon unaker miced crass
Land sommunities in mestem Nionh Datola. Numbers
refer io rands dexnbed in texit.
Source: Robere E. Redmann; "Production Ecology of Grassiand Plant Coumunities in Western North Dakota," Ecological Monographs, 45 (Winter, 1975); p: 93.


a. Triurgular Cōordinato Groph

TMe tril...-ar chart wä biit used tor in. wrotication on Mirenali, of eon. erres meaturet Thig furm ifindi itroll to ine drmonitiation af niob. lemin involvine emiaiuie of thiope inciredifnts. oueh ai diloyi con. torning thyer metolo ond food io. enons ementarning three dietetic elemonta.



1. Equilibrium Diagrom of The Ternary Sysiom, Leucite-Diopside-Silica.
XVI.1.256 315




Figurt C28. 1936 préridential vore by party identication (19sio) ane by religious Jientifiotson (1960).

Source: Philip E. Conicisc, "Religion and Politics: The jǵgo Ejection;" in Angū Campbell; Philip E. Converse; Harren E. Miller, and Donald E. Síokes, Elcetions and the Yolitic.al Ord.r (Now York: liil. צ, 1966), pp. 102-103.

QMPM

Figure 13



Soūre: Office of Education; $\overline{H E W}$, American Education, October, 1975; piz.


XVI.I. 258

317

QUANTITATIVE METHODS FOR PUBEIC MANĀGEMENT
MODJLE II, REVISED

Developed by
SCHOOL OF URBAN AND PUBEIC AFFAIRS CARNEGIE-MEILON UNIVERSITY

SAMUEL LEINHARDT, PRINCIPAL INVESTIGATOR
and
STANLEY S. WASSERMAN

Undè Contract to
THE URBAN MÁNAGEMENT CURRICULUM DEVELOPMENT PROGRAM the national training and development service 5028 Wisconsin Avenue, N.W. Washington, D.C. 20016

Funded by
The Office of the Assistant Secretary for Policy Development and Research
U.S. Department of Housing and Urban Development

## Acknowledgements

Assistance in the preparation of this package was provided by Blaine Aikin, Larry Albert, Joseph Chmill, Steve Clark, Marjorie Farinelli, Janice Greene, Gretchen Hemmingsen, Paul W. Holland, J. Michael Hopkins, Gaea Leinhardt, Richard Sandusky, Christine Visminas, Diane Warriner, and Tamar Zeheb.

Material intended soléy for the instructor is denoted by a (I) Materiai that should also be distributed to the students is denoted by a (S).

Introduction to Module II (I)
Reading Assignments, Unit 3 (S)
Prerequisite Inventory; Unit 3 (S)
Homework, Prerequisite Inventory, Unit 3 (S)
Homework Solutions; Prerequisite Inventory; Unit 3 (I)
Lecture 3-0 Outline (I)
Lecture 3-0 Transparency Presentation Guide (I)
Lecture 3-0 Transparencies (S)
Lecture 3-1 Outline (I)
Lecture 3-1 Transparency Presentation Guide (I)
Lecture 3-1 Transparencies (S)
Lectüre 3-2 Outline (I)
Lecture 3-2 Transparency Presentation Guide (I)
Lecture 3-2 Transparencies (S)
Lecture 3-3 Outline (I)
Lecture 3-3 Transparency Presentation Gufde (i)
Léctūrē 3-3 Transparencies (S)
Lécture 3 - $\overline{4}$ Outline (I)
Léture 3-女 Transparency Presentation Guide (i)
Lecture 3-4 Transparencies
Homework; Unit 3 (S)
Homework Solutions; Unite 3 (I)
Ouiz; Unit 3 (I)
Quiz Solutions; Unit 3 (i)

Page

XVI. İ. 4

XVY: ín. $\overline{5}$

XVI.II. 33
XVI.II. 36
XVI.II. 42
XVI.II. 43
XVI.II. 53
XVI.II. 59
$\overline{\overline{X V I}}$. İI. $6 \overline{0}$
XVI.II. 74
XVI.II. 80
$\overline{X V I} . \bar{I} \overline{81}$
$\overline{X V I} . \bar{I} \bar{I} .93$
XVI.İ. $\overline{100}$
XVI.II. 102
XVI.II. 119
XVI.II. 125
XVI.II. 126
XVI.II. 140
XVI.II. 151
XVI.II. 177
XVI.II 183Reading Assigments；Unit 4 （S）XVI－II． 186
Prerequisite Inventory，Unit 4 （S） ..... XVI． $\mathbf{I I} \mathbf{- 1 8 7}$
Homework，Prerequisite Inventory，unit 4 （S） ..... XVI．EI： 212
Homework Solutions；Prerequisite Inventory，Unit 4 （I） ..... XVI． $\mathbf{I I} \mathbf{- 2 1 3}$
Lecture 4－0 Outline（I） ..... XVI－II－215
Lecture 4－0 Transparency Presentation Guide（I） ..... XVI－II． 222
Lecture 4－0 Transparencies（S） ..... XVI－II－223
Lecture 4－1 Outiine（I） ..... XVI． $\mathbf{I I} \mathbf{2 3 1}$
Lécure 4－2 outiñe（i） ..... XVI．II． 239
亡ecture 4－3 outiñe（i） ..... XVI：主主：249
Lécture 4－3 Transparency Presentation Guide（I） ..... XVI－II： 262
Lecture 4－3 Transparencłes（S）XVI．II－263
Lēcture 4－4 Outin̄̄e（i） ..... XVI：II－279
Lécture 4－4 Transparency Presentation Guide（I） ..... XVI．II． 285
Lécture 4－4 Transparencies（S）XVI ．II． 286
iecture 4－5 Outline（I） ..... XVI．II． 300
Lecture 4－5 Trāsparency Prēsentation Guide（I） ..... XVI．II． 305
Lecture 4－5 Transparencies（S） ..... XVI．II． 306
Lecture 4－6 Outline（I）
XVI．II． 313
Lecture 4－7 Outline（I）
Homework，Unit 4 （S）XVI．II． 319
Homework Solutions，Unit 4 （I） XVI．II． 330XVI．II． $\mathbf{3 2 6}$
Quiz，Unit 4 （I）
Quiz Solutions，Unit 4 （I）Handout：Covariancē and Independence in the Bivariate$\overline{X V I} . \bar{I} \bar{I} .36 \overline{8}$
XVI．II． $\mathbf{3 7 0}$XVI．II ． $\mathbf{3 9 2}$Multiple Regrēssion Model
Handout：What to book for in Reading Technical Reports（S）XVI．II． 396Hondout：Some Principles of Graphics for Scatterplots（S）XVI．II． 398

Introduction to Module İ

## overview

Module í of the Quantitative Methods for Pubifc Management package provides students with experience in handing complicated data sets describing poiqcy reievant issues and; thus; promotes the development of anaiyticaily oriented manageriai skíis. Two
 module contains two units, numbers 3 and 4. Unit 3, y versus one X, introduces the student to modeling a relationship between two variables: a carrier variable, X; añ à response variable; y. The general strategy is to use a linear model of the relationship and explore the utility of various transformations on $X$ or $y$ or both in improving the fit of à linēar modē. Fittiog, modēing; finding equations for data, and evaluating a fit āe $\overline{\mathbf{g}} \overline{\mathrm{l}} \mathrm{l}$ specific téchnical skills taught in this unit. Some simple procedures àre introduced for determining à good transformation and for fitting a line to transformed dāta. All procedures can be performed with= out the aid of a computer.

Unit 4 , the second unit in Module $\bar{I} \bar{I}$, introduces the student to modeling relationships between one response variable, $y$, and muliple carrier variables, $\bar{X}_{\bar{i}}$. Transformations to improve the reasonableness of a linear model are again stressed. In this unit the fitting technique is least squares regression, and the student
receives an extensive exposure to the mathematical principles of of the 之east squares fitting procedure as weli as numerous examples of applications with special emphasis on the pitfails and dangers of simple, mechanical appifcation of regression anaiysis to miltivãāātē dātā.

## Specific Objectives

## Uñ元 3

Upon successful completion of unit 3 a student: will be able tó perform graphical anāyses of multiple ordered batches of quantitative data; sumarize these batches using the notions of a conditional typlcalvalue, constrict scattērplots of $X, y$ data sets in which $X$ and $y$ are quantitative variables, use a line fitted through the conditional typicals to model an $X$, $y$ data set, use least squares to fit a line to $X$, $\bar{y}$ data set; find a transformation of $X$ andor $y$ to improve the linearity of a fitted model for the data, and analyze $X, y$ data in wich $\bar{X}$ is a variable indicating time. The criticā skills a student wili obtain include the ability to evaluate how weli typical conditionals sumarize batches, evaluate the ability of a ifnear fit tó sumarize à $\bar{x} ; \bar{y}$ data set, évaluate the comparative advantage of least squares versus other fituing procedures, evaluate thé need for a transformation, and evaluate the need for smóthing of a data set in preparation for an analysis of time series datá.

$$
323
$$

XVI.II. 2

## Unit 4

Upon successful completion of Unit 4 a stadent will be able to construct a model for continuous multivariate data using the least squares procedure, find transformations that improve a least squares fit, interpret coefficient values in a regression model; use indicator variables and splines in model construction, perform inference on coefficients, perform regression analyses on a computer and by hand, and evaluate a fitted model.

In this unit the critical skills the student will learn center around comprehension of the effectiveness of the least squares procedure as a fitting technique and the problems that arise when nonlinearity is present, when overfitting occurs, when residuals are not nomally distributed, and when cārier variablesare colifnear. Students will be able to evaluate thē āppropriātēness of using the least squares fitting procēdure for specific dātá sets and be ablē to determine whether results are due to rēantionships in the data or to the peculiarities of the fitting procedure. Since this technique is one of the most comon analytic procedures appearing in quantitative policy studies; the "doing" and "criticizing" Ekills learned in Module II will be very important to the practitionē.

Unit 3
Reading Assignments

Lecture
3-0
3-1
3-2

Workshop
3-3

3-4

Reading
Prerequisite Inventory
Tukey, Chapter 5
Tufte; DAPP, Chapter 1
"Graphics for Scatterplots"
McNeil, Chapter 3
Tufte; DAPP; PP: 65-108
Tukey, Chapter 6
McNeil, Chapter 6
Tukey, Chapter 7
In addition, read the following articles in Tanur et al:
Pp. 120-129
153-161
195-202
354-361
and the following articles in Tufte, QASP:

$$
\begin{array}{ll}
\text { pp. } & 37-67 \\
113-125
\end{array}
$$

## Texts:

McNeil, Donald R., Jiteractive Data Analysis; New York: John Wiley \& Sons; 1977.
Tanur, judíth, et ā1., editors; Statistics: A Guide to the Unknown, San Francisco: Holden-Day, 1972.

Tufte, Edward $\mathrm{R}_{\mathrm{i}}$, Data Analysís for Politics gnd Policy; Englewood Cíffé, $\mathbb{N} . \mathrm{J}_{\mathrm{f}}:$ Prentice:Hali; Inc.; 1974.

Tufte, Edward R., editor, The Ouantitative Analysis of Social Problems, Reading, Maseachusetts: Ad̃ison-Wesley Publishing Co..; 1970.

Tukey, John W., Exploratory Data Analysis, Reading, Masachusetts: Addison-Wesley: 1977.

$$
325
$$

## Prerequisite Inventory Unit 3

Unit 3 of Module 1 focuses on the analyeis of ordered multiple batches and paired batches of data; i.e., data in which every element of one data vector is associated with an element in another data vector. As in the prior two units, the skills to be learned in this unit presuppose mastery of several elementary concepts and procedures. Before proceeding to Unit 3; you should assure yourself that you are familiar with these basics.

This inventory is divided into the following four sections:

1. Review of Units 1 and 2
2. Functiong-- Paired Observations; Notation; Plotting
3. Special Types of Functions--Inear; Absolute Value,

Exponential; Inverse; Logarithm; and Polynomiai
4: Properties of Functions--Minfinization
Additional references to these topics appear in the Appendix. Homework problems have been assigned which require use of these concepts. if you discover that you are weak in areas which will not be covered in class; you should consult appropriate course personnel to arrange for tutorial assistance and/or a reading guide to background material.

$$
320
$$

Section 1. Review of Units 1 and 2
Data acquired by data analysts are usually orgañzed in arbitrary fashion: While arbitrarily organized data may make retrieval of specific values easy (e.g.; an alphabetical organization of test grades for students in a ciass) it obscures the behavior of the batch of valucs and makes continued analysis of the batch difficult: The stem-and-leaf display is one tool the data analyat may use to organize data analyticaily. This type of display possesses features of numericaily ordered sort of the values and óf $\overline{\mathrm{a}} \overline{\mathrm{h}} \overline{\mathrm{s}} \mathrm{tog} \mathrm{gam}$ simultaneousiy. While it permits retrievai of individual values it also provides a picture of the shape of the batch and permits one to obtain the order statistics $\bar{b} \bar{y}$ counting in. In constructing a stem-and-leaf display one first notes the extreme values of the batch and makē a choice of unit for the leaves. These are placed to the right of a vertical line which breaks the original values in the batch into stems, which are multiples of the unit; and leaves. Thus, the numbers - 30 through 30 would appear below in one possible stem-and-leaf display.

-3	0
-2	9876543210
-1	9876543210
-0	987654321
0	0123456789
1	0123456789
2	0123456789
3	0

327
(Notice that the location of zero on the number ine has been split into -0 and +0 . It does not matter whether smaller values appear towards the top of the display or towards the bottom; the choice is up to the data analyst. Stretched versions of the displáy are possible by using two lines per stem with leaves with vàlués from 0 to 4 on one inne and 5 tó 9 on another (using $*$ and . as reminders) or five lines per stem (using $\overline{\boldsymbol{*}}, \overline{\mathrm{t}}, \overline{\mathbf{f}}, \overline{\mathrm{B}}$; . as reminders). It is sometimes necessary to change the unit in the middle of a display. By using asterísks as place holders and placing leaves on the set of stems with the correct number of asterisks, such compound stē-ād=leaf displays can be created. The integers frow 80 to 200 illustrāā this implicit increase in unit.

$$
\begin{array}{l|l}
8 * & 0123456789 \\
9 * & 0123456789 \\
1 * * & 0123456789 \\
2 * * & 0
\end{array}
$$

(Note the inclusion of a blank row to separate the parts of the display which are based on different units.) Aiso note that the change in unit means that not all the integers from ion to 200 are displayed. Rathér, the units shift leads to representing onjy the integers 110, 120,. . . , 190, 200. Remember that when making stem-and-leaf displays free hand, care mist be taken to line up leaves under one another; otherwise the display's ability to give an accurate impression of the shape of the batch may be compromised.

If the stem-and-leaf display stiti seems a bit confusing Chapter $\overline{1}$ of McNe
 data organizing tool, for some purposes it may retain too much information. Putting the information that in in abatch into numeric and graphic sumaries is cailed condensátion. While some information $\bar{i} \bar{s}$ lost in this condensing process; it reduces the number of distracting factors to a amall, éasíly apprectated set of values or aspects of pictures. These sumaries are usuaily more easily manipulated and contrasted than are stem-andleaf displays: But remember; they are not as informative as a stem-and-leaf dispiay. it ís usually wise to examine à stem-and= leaf display of a batch before condensing it.

The five number summary contains the median, hincees and extremes. The median is the value obtained by counting in the sorted batch halfway. It is located at the "depth" ( $\mathrm{N}+1$ )/2 where N $\overline{\mathrm{f}} \mathrm{s}$ the total number of values in the batch. If $\overline{\mathrm{N}}$ is even; then the median is the mean of the two middie values. The hinges are located at: (depth of the median +1 )/2. The extremes are simply the largest and smallest values in the batch. They are located at either end of the batch at depth 1 : Tukey suggests the following letter value display for this summary.

$$
329
$$



An extended version of this display, a fenced letter display; gives the value of the midspread (the difference in the hinges); a step ( 1.5 times the midspread); the inner fences ( 1 step beyond each hinge), the outē fencēs ( 2 stèps beyond), and the adjacent values (the last valués before each inner fence).

(Note that for some batches adjacent values and hinges may be equal.)
XVI.II.9

The sechematíc plot is à grāphical sumary. It represents the values from a fenced létēr display as a picture.


Note that the inner fences and outer fences are not actually drawn in the display.

The schematic plot can bé drawn vertically or horizontally at the discretion of the analyst.

The utility of this picture rests in its schematic quality; it is a structural outline of the batch. of course; there will be batches whose structures are not weil conveyed by this form of display. Batches with separations between values may fit in this cilass. Consequently, graphical sumaries as well as numerical sumaries should be rexied upon only after the entire batch has been examined in a stem-and-leaf display.

It is ēasier to think about and sumarize batches which are symetric than those which are not. In a symetric batch the median will be in a position around which the batch could be folded with one half of the batch reflected by the other half. Consequently,

$$
\text { xvi. } \overline{\mathrm{I}} . \overline{\overline{10}} .331
$$

the hinges and extremes will be equàiy spaced from the median. When the batch is syumetrical; the mid-hinge (the mean of the hinges, MidH), and the mid-extremes (the mean of the extremes; MidE), will have the same value as the median. This fact can be used to test for symuetry. (Note that in some batches which we will cāl symetric these values will be only approximately equal.) Some batches; while not symetric in the original unit; become symetric after a simple power transformation of the form $X^{r}$ where $r$ is a simple power, a rung on the ladder of powers and where $\bar{r} 0$ implies logarithms. To find the transformation that bést symuetrizes the batch we need only investigate the mídsumary Values dērived from the batch's five number sumary. When M < Mid $\overline{\mathrm{H}}<\overline{\mathrm{C}} \mathrm{M} \overline{\mathrm{d}} \mathrm{E}$ we go down the iadder of powers; when
 be a convenient $\overline{\mathrm{r}}$ which symmetrizes the batch in question. In that case, the raw values must buffice. The midsumary array of a transformed batch is called a transformation sumary.

The usual values of $\bar{r}$ are $1 / 2$ for square roots, 2 for squares, - $\overline{1}$ for recifrocals (negative to presérve ordér) and 0 for 10gs. Sometimes we can achieve easy transformation simply by using the following rules for types of data: For mounts and large counts use logs, for percentages use the arc sine of the square root, and for balances transform before subtracting to obtain the balance.

A special kind of symetric batch that has no outilers and closely approximates a theoretical Gaussian or Normal curvé, is called a well behaved batch. It is mathematically convenient to sumarize such batches with the mean and standard deviation. The mean, $\bar{X}$, is equal to:

$$
\frac{\sum_{\mathrm{E}}^{\mathrm{N}} \mathrm{X}_{\mathrm{I}}}{\mathrm{~N}}
$$

and the standard devtation, $\bar{s}$, is the square root of the variance and is equal to

$$
\sqrt{\frac{I}{N} \sum\left(X_{i}-\overline{\mathrm{X}}\right)^{2}}
$$

Another way of thinking about the standard deviation is to view it.as the average squared deviation about the mean. An important property of a well behaved batch is that $s \approx 3 / 4$ midspread. (Remember the symbol man means mapproximatély equal to".) We can transforil any well behaved batch into à standard well behaved bātch by subtracting the mean of the batch from each value and dividing each difference by the batch standard deviation. The resuiting batch of standardized values has mean $\overline{=} 0$ and variance $\equiv$ standard deviation $\equiv \overline{1}$.

The importance of this standardization process is that agreat deál is known about the properties of standard well behaved batches. In particular, we know what percent of the batch lies between various values. For example, between -1.96 and +1.96 lies $95 \%$ of the values.

$$
\text { xvi.17.12 } 333
$$

Well behaved batches play particularly important roles in statistical inferēnce for regression by least squares, a topic to be covered latèr in this coursē. Any well behaved batch is complētely sumarized whèn its̄ mean and stādād dēviation are known. For 111 behaved batches, which are by far the more common variety, the mean and standard deviation axe very rārèly sufficient sumariés.

When we have only one batch of values there is little additional analysis that can be performed. Once we have answered questions concerning typical value; spread, shape; and separations and have searched for a symetrizing transformation, we have obtained just about as much information as we can. However; when the data come. In the farm of multiple batches; we can expand our inquiry by contrasting the batches with one another: Unordered muitiple
 relation between them, i.ē, the batchē cannot be locatē on a scāle: Ordēred bātches; tō be considered in unit 3; possesses thís property: By contrasting batches we mean that we can compare typlcal values; shapes, etc.--all of the features which, for single batches, we simply noted.

To perform contrastes on unordered uilitiple batches we can usé the same tools employed earlier but in parallél fāsion. That 1s, we can draw stem-and-lēaf displays and schematic plots side by side. We musit be careful here to have the plots on the same scales and to ūe the same units. We can also use side by side numbèr sumariés for contrasts.

```
XVI.II.13 3.3.4
```

Often; a consistent relationship between typical vaiue and - $\bar{p} \bar{r} \bar{a} \bar{d}$ may interfere with our ability to make an effective comparison. This occurs when there is an obvious trend in wifch typicà value increases with spread ō vice versa. When this happens ít is very difficuit to determine how meh of apparent differences in typical values are due to differences in spread. An appropriately chosen transformation can often effectively equalize spread and permit us to perform contrasts with the confounding influence of changes in sprēad éliminated. We can usūālly find this transformation by first calculating the median and midspread for each bātch and then making à scatterplot of log (median) against log(midsprēad). If a clear line seems to fit these points we crudely estimate the $s$ lope of this ine, $m$, and transform ali the batches by taking $X^{r}$ where $r=1-m$, following the rules for the ladder of powers. One may also view this procedure as a way of obtaining the appropriate unit for all the data. (Sometimes it may be necessary to examine log(median) against log(difference in extremes).)

## Section 2. Functions

One of the most fundamental concepts in modern mathematics is that of functions. A function is an operation involving two sets of numbers; the input values which are usually denoted by $\bar{x}$, and the output values, usually denoted by $y$ or $f(x)$. (Note this functional notation. We read notation $f(x)$ as "f of $x$ " or "a
function of $x$ ". Other letters in upper or lower cāé may be used instead of $f$. Do not confuse the use parentheses here with their uevai usage in an equation where they imply a multiplicative operation: Brackets, 1 l , and other separators may be used for the same function notation purposes.) To each input value, a function assigns exactly one output value: The set of all input values for a function is called its domain and the set of all output values is its range.

The mathematical operations that we use most often, such as square root, equare, and logarithm; are all functions. When we use a variable to represent the domain of a function, we cali it an independent variable: The variable representing the range is called the dependent variable; it is functionally dependent on the independent variabie: Functions are usually indicated by letters preceding the independent vāriable which is enclosed in parenthēses. Thus; $\bar{f}(\bar{x})=10 g_{b} \bar{x}$ is the logarithmic function; $\mathbf{f}(\bar{x})=\bar{x}^{1 / 2}$ is the square root function, etc. A useful way of thinking about functions is to view them as rules of correspondence. A $\bar{g} r a p h i c a l ~ r e p r e s e n t a t i o n ~ o f ~ t h i s ~ a s s i g n m e n t ~ p r o c e s s ; ~ i n ~ w h i c h ~ v a l-~$ ues in the domain are assigned to values in the range; is shown below.


Domain

We deal with functions whose domain and range consist of real numbers, ie., functions of real variables. A subset of these functions are functions which have as their domains only the integers. These are called functions of discrete variables.

We can obtain geometric representations of functions of a variable by graphing or plotting the function on a rectangular or Cartesian coordinate system. In this system two real lines (coordinate axes) are drawn at right angles on a plane so that they share a comon origin. The convention is to label the vertical line as the $y$-axis and the horizontal line as the $\bar{x}$-axis.


When a rectangular coordinate system is drawn on plane the plane is cailed a rectangular coordinate plane or gy-plane. Points may be plotted on this plane in the following way. An ordered paif of values, one for the $\bar{x}$ variable and one for the $y$, in that order

$$
337
$$

(by convention), is detemined. These are usually given as a pair of values enclosed in parentheses: To graph the point we
 the first membér of the ordered pair of values $\overline{\mathrm{e}}$ - We then move vertically above or below this point parallel te the y-zxis until we reach an imaginary horizontal line intersecting the y-axis at a point on the $\bar{y} \overline{8} c \bar{a} \bar{l} \bar{e}$ equal to the second of the ordered pair of vālués. An illustriation appears below for the points ( $-4 ;-3$ ), $(4,-3),(-4,3)$ and $(4,3)$

$$
\begin{gathered}
(-4,3)-2=-\frac{2}{3}+(4,3) \\
(-4,-3)
\end{gathered}
$$

Obviousiy, the procedure can be performed in reverse order by first finding the $y$-axis location and then the $\bar{x}$. The dashed lines in the Illustration are provided for clarity and are not drawn in practicé To distinguish one point from another we use subscripts. Each ordered pair receives a subscript value specifying its bequence in the set of ordered pairs. If we think of the four plotted points as having come to us in the sequence $(-4,3),(4,3),(4,-3),(-4,-3)$

335
XVI.II. 17
then we can indicate these four points as follows:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=(-4,3) \\
& \left(x_{2}, y_{2}\right)=(4,3) \\
& \left(x_{3}, y_{3}\right)=(4,-3) \\
& \left(x_{4}, y_{4}\right)=(-4,-3)
\end{aligned}
$$

In general, points are denoted ( $x_{\bar{i}}, y_{\bar{i}}$ ) where 1 runs from 1 for the first point to $n$, the last point. When $\left(x_{\bar{i}}, y_{i}\right)$ appears aione it means "some arbitrary point".

Formally, we say that the rectangular coordinates of a point are given by the ordered pair ( $x, y$ ) and we use the terms point and ordered pair interchangeably. The terms for the $x$ and $y$ values in the ordered pair are abscissa and ordinate, respectively. We àso name the ouadrants into which the rectangular coordinate system divides the plané as follows.

II	$\bar{I}$
III	$\overline{\text { IV }}$

Quadrants of the Cartesiay Plane

We can graph functions by recording in ordered fashion values of the domain and corresponding values of the range. If the function is defined on a continuous variable then the number of possible points that can be graphed will be infinite regardless of whether the

$$
339
$$

function is bounded: We represent the graph of a continuous function ss a points:

The procedure involves constructing à table for $x$ and $\bar{y}$ values. One chooses $x$ values in the domain of the function and solves the equation for the corresponding individual values of $y$. usualiy; a few ordered pairs of values are sufficient to allow ū to make a geometric picture of all the ordered pairs that represent solutions to the equation: Obviously, if the domain and range extend over ail the real numbers, we can't graph the function all the way to infinity: By convention; we place arrow heads on the end of graphed curves to indicate that the function continues similarly beyond the last plotted point (although sometimes the arrowheads are left out). Examples of these procedures appear below and in the next section.

Note that not ail equations in $x$ and $y$ define functions of $x$. Nor are all curves that can bé drawn on the xy-plane functions of x. The critical quaility of a function is the assignment of a of a single value in the domain to a single value in the range. Compare the following graphs.

Not functions of $x . \quad$ Functions of $\bar{x}$.


XVI.II. 19 - 30

## QMPM



In general, the graph of fanction, $f(x)$, contains all points ( $\bar{x}, \bar{f}(x)$ ), where $\bar{x}$ is in the domain of $f$. The procedure for plotting equations which are not functions of $x$ requires obtaining all the multiple values for $y$ which represent solutions to the equation for a given value of $x$.
3.11
XVI.II. 20

## Section 3: Special Types of Functions

## A. Linear functions

Functions of the form

$$
f(x)=a x+b
$$

where and b are real numbers are called linear functions. Their graphs are straight innes which intercept the $y$ axis at the point $(0, \bar{b})$ and have siope $=\bar{a}$. The slope is often denoted by an "m" and is the ratio of the vertical change to the horizontal change, or the number of unit changes in $y$ for $\bar{a}$ unit change in $\bar{x}$. The Greek upper case deita," $\Delta$ ", by convention, is used to represent change. Thus, slope is

$$
m=\frac{\Delta y}{\Delta x}
$$

and can be computed from any two points that lie on a line, ( $x_{1}, y_{1}$ ), $\left(x_{2}, y_{2}\right)$ by the following definftion:

$$
m=\frac{\Delta y}{\Delta x}=\frac{\bar{y}_{2}-\bar{y}_{1}}{x_{2}-x_{1}}
$$

For any pair of points satisfying a given innear function, this ratio is constant. The siope of the verticai inee $\bar{x}=\bar{a}$ is not defined (note that this equation is not a function of $\bar{x}$ ).

Some important facts about ines foliow.
a. Two ines with slopes $\bar{m}_{1}=\bar{m}_{2}$ are parallel.
b. A horizontal ine has siope $\bar{m}=0$.
3.12

MM
c. $\overline{I f} \overline{\ln }>\overline{0}$ the line rises from left to right; ice.; it slopes upward.
d. If $m<\overline{0}$ the line falls from left to right, i.e., it slopes downward.
e. The form $y=m x+b$ is called the slope-intercept form of the inn.
f. The form $y-y_{1}=m\left(x-x_{1}\right)$ is the potnt-siode form of the equation for a line.
g. The form $a x+b y+c=0$ is the general linear form of the equation for a in e.

## B. Absolute value

The function with the form

$$
\bar{f}(\bar{x})=|\bar{x}|
$$

is called the absolute valve function. The two vertical bars surrounding the $\bar{x}$ on the $\bar{r} \dot{\underline{g}} \bar{h} \bar{t}$ side of the equation are a notational convention indicating that only nonnegative values of $\bar{x}$ are to be returned. Thus; the domain of the absolute value function is all the real numbers while its range is the nonnegative reals. Its graph appears below.


The A solute value Function 3.1

## C. Exponential

The function with the form

$$
f(x)=\bar{b}^{\bar{x}}
$$

where $b>0, f 1$ with all the real numbers in its domain is called the exponentiā function. Its range is all the positive numbers.

The exponential function has a graph with the shape:

when $b>1$ and $a$ shape

when $b$ is between 0 and 1. Regardiess of the actual value of $b$, the graph has one of these two basic shapes. for b>1, $\overline{\mathrm{a}} \mathrm{s}$ b increases the curve becomes more steep. For $\bar{b}<\overline{1}$, $\bar{a} s b$ decreases the curve becomes more steed.

The constant; $\bar{b}$; $\bar{s}$ called the base of the exponential. Two common bases are the irrational number; e $\bar{\approx} 2.71828$; and the number 10. Note that graphs of all exponential functions pass through the point (0,1). Furthermore, aithough the curve approaches the $x$ axis, it never actually intersectes it.
D. Inversē

The inverse of a function is that function which when applied to a function of $x$ returns the original value of $\bar{x}$. The inverse; by convention, is denotẹ by a superscript -1 placed at the upper right hand side of the function just before the left parenthesis, è. $\overline{\mathrm{g}}$. , the inverse of $\bar{f}(x)$ is $f^{-1}(x)$ and $f^{-1}[f(x)]=\bar{x}$.

If we think of a function as a rule of correspondence which assigns a value in the function's range to every value in the domain, then the inverse function takes as its domain the function's range and assigns to these values the corresponding values in the function's domain. For example; if $f(x)$ is a function with a domain vaiue of 5 assigned to a range value of 25 then $f^{-1}(x)$ has a domain value of 25 to which 5 is the assigned value in its range. A graphical picture of this process appears below.


The inverse of the innear function; $f(x)=a x$ is $f^{-1}(x)=(1 / a) x$ Bince; by substitution; $\left.f^{-1} f(x)\right)=f^{-1}(a x)=(1 / a)(a x)=x$. The function $f(\bar{x})=\bar{x}$ is its own inverse. In general, if $f(x)=a x+b$ then $f^{-1}(x)=(1 / a)(x-b)$.

## E. Logarithm

Another important inverse function is the inverse of the exponentiai; the logarithmic. Recall that the logarithm of $x$ to the base $b$ is defined as

$$
y=\log _{\dot{b}} x
$$

which is imply a notational way of saying that

$$
b^{y}=\bar{x} .
$$

To see that the logarithm is the inverse of the exponential we must determine $\bar{f}^{-1}[\bar{f}(x)] \quad \overline{f o r} \quad f(\bar{x})=b^{x}$. Assuming that $\mathrm{f}^{-1}(\bar{x})=\log _{\mathrm{b}}[\bar{f}(\bar{x})]$ we have $\bar{f}^{-1}[\bar{f}(\bar{x})] \equiv \log _{b} \mathrm{~b}^{\bar{x}}=\bar{x} \quad\left(\log _{b} b\right) \equiv \bar{x}$. in other words; the logarithmic function is defined as the inverse of the exponential, e.; it is that function which reverses the ordering of the pairs of points that represent assigned vaiues of the domain and range for exponential functions:

We can see this graphicaily in the diagram beiow.


We see from the diagraw that the base, $\bar{b}$, for the iogarithm is the XVI.II. 25
same constant that is the base of the exponential. Where the point $(0,1)$ must be on the exponential piot; the reversed point $(1 ; 0)$ must be on the logarithmic. While the exponential approaches the x-axis (1.e.; the point where $y=0$ ) but never reaches it (except at $\bar{x}=-\infty$ in the example) the logarithmic approaches the y-axis (i.e.; the point Where $x=0$ ) but never reaches it (except at $y=-\infty$ in the example).

## E. Polynomials

Functions of the form

$$
y=f(x)=\dot{a}_{0}+\dot{\bar{a}}_{1} x+\bar{a}_{2} \bar{x}^{2}+\ldots .+\dot{a}_{n} x^{n}
$$

are called polynomals in $x$ of degree $n$ where $n$ is the targest exponent of $\bar{x}$ for $a \neq 0$. The exponent of $x$ is always nonnegative and the constants, $a_{i}$, are real numbers. Polynomials in $x$ can be plotted on the Cartesian plane.

The linear function is a polynomial in $x$ of degree 1. An important polynomial is the polynomial of degree $\overline{2}$, called the guadratie function. It is usually written as

$$
y \equiv a x^{2}+b x+c
$$

The domaj of the quadratic function is all the real numbers and, in general, the graph is of the following form:

XVI.II. 26

Note that the graph of the quadratic function may be shifted to the right or left or up or down depending on the values of the constants. A graph of a quadratic is called a Darabola. Another form is $y=\bar{g}(\bar{x}-\bar{h})(\bar{x}-\bar{k})$ where $\bar{g} ; \bar{h}$ and $\bar{k}$ are constants.
 have two beñōs in them. poiynomials of dēgree higher thān three do not have special names. In general, the graph of a polynomial of degree n has n̄ $\overline{1}$ beños:

## Section 4 -Properties of Functions--Minimization

Functions of $\bar{x}$ can bé evaiuatéd over thér entire domains or over
 function is said to be increastng or dẹcreastng depending on whéher; às $\bar{x}$ increases, $\bar{f}(\bar{x})$ is $\bar{s} \bar{t} \bar{i} \bar{y} \bar{t} i y$ increasing or strictiy decreasing, $\bar{r}$ espectiveiy. For some functions, such as linear functions, the function jil be either increasing or it will be decreasing over its entire domain. This is also true of the exponential and iogarithmic functions. However, polynomíais have bends in them and are súrictiy increasing or strictly decreasing only within some interval on the x-axis.


A Parabola

The parabola in the example decreases in the interval $-\infty<x<0$ and is increasing in the interval $0<x<\infty$. The absolate value function, $f(x)=|x|$ behaves similarly.


Absolute value Function

Functions that are strictiy increasing have minimum values of $f(x)$ at their left-most bound: In other words; linear functions with positive slope have values of $f(x)$ which are less than any other value In their range when $x$ is the iowest value in their domain: inear functions that are decreasing over their domain; i.e.; returning smailē and s̄mailer values for $f(x)$ as $\bar{x}$ increases; have a minimum vaiue in their range that corresponds to the maximum value in their domain. If these functions have domains which are the real numbers then their minima are not defined. Exponentials in which $b$ is $>1$ are strictly increasing and when $b<1$ (but $>0$ ) they are strictly decreasing. The same will be true of logarithmic functions.

Linear functions that have positive slope are increasing; those with negative slope are decreasing. To evaluate a function which is not linear we may place lines tangent to points on the function and examine the slopes of these tangents. If the slopes are always positive, then the function is increasing; if the slopes are always negative, then the function is decreasing.

Some non-linear functions have pointes where $\bar{a}$ tangent to the curve will have siope $=0$. These are cāiled critical points. If the dírectionaifty of a function changes within some interval in its domaiñ íē.; if it goes from decreasing to increasing or increasing to decreasing; then the siope of tangentes to the curve must go from positive $\bar{t} o$ negative or negative to positive; respectively. to do so they must at some point have siope $=0 ;$; $\overline{\text { ée.; }}$ they must have a criticai point in this same intervai. if a switch in directionality ōccurs in an interval then the critical point is a relative minimum or relative maximum depending on whether the change in directionality goes from decreasing to increasing or from increasing to decreasing.

if there are no other relative minima or relative maxima then the c̄rícical point identifies an absolute minimum or absolute maximum.

$$
350
$$

XVI. 1 主. 29
*-...

Homework
Prerequisite Inventory, Unit 3

1. On a cartesian coordinate system graph the function

$$
f(x)=|x|+10
$$

for the values of $x=-10$ through +10 . Label the point $(0,10)$.
2. On a cartesian coordinate system graph the function

$$
f(x)=\frac{1}{x}
$$

for the values of $x=-10$ through +10 . Label the points $(-1,-1)$ and ( 1,1 ).
3. Make a plot of the function

$$
f(x)=\sqrt{x}
$$

for integer values of $\bar{x}$ from 0 to 10 .
4. Graph $x=4 y^{2}$. Is this a function of $x$ ?
5. What are the domain and range of the following functions?
a. $f(x)=|2 x-10|$
b. $f(x)=\frac{16}{x^{2}}$
c. $f(x)=\sqrt{x-5}$
6. Locate and labē the following points on a rectangular coordinate system and give the quādrantes in which each point lies.

$$
(2,7),(8,-3),\left(\frac{1}{2},=2\right),(0,0)
$$

7. The following table indicates the number of widgets that are purchased each week for four weeks and the price widgets sold for in each week. Plot pricee as aunction of quantity sold. Sketch in the wave. What is the name for this type of curve (in Economic jargon!)? What is the relationship between widget price and widget sales? Is this an increasing or decreasing function?

week	1	2	3	4
price/widget	20	10	5	4
quantity/week sold	5	10	20	25
			$3 S$	

XVI.II. 30
8. Find the slope of the straight line which passes through the following points.
a. $(5,2),(7,5)$
b. $(-2,3),(3,-1)$
c. $(-2,4),(-2,8)$
d. $(5,-2),(4,-2)$
9. Give in functional form the equations for linear functions that have the indicāted properties.
à. passēes through $(1,2)$ with slope 6.
B. passeses through $(-2,5)$ with slope $-1 / 4$.
c. passsēs throūgh $(1,4)$ and $(\overline{8}, 7)$.
d. passēes through $(3 ;-1)$ and $(-2,-9)$.
10. For the following give the slope and $y$ intercept of the line.
a. $\bar{x}=-\overline{2} \bar{y}+\overline{4}$
b. $4 x+9 y-5=0$
c. $\frac{3}{4} x=\frac{7}{3} y+\frac{1}{4}$
d. $\frac{2}{3}-\frac{3}{3}=-4$
11. The forec. ..on of tion, $P_{F}$, of a city is given by

$$
F_{i} \quad \bar{F}_{i}=\bar{a} t
$$

where $P_{c}$ is ine icrent population, a is a constant, $e$ is Euler's number and : 1 - c n number of years after 1976.
If the city's cusent popilation is 100,000 give che forecasted population 1I 1996 (assume $a=-05$ ). What interpretation can you give to a?
12. If $6 y=e^{2 r}$ express $r$ as a function of $y$.
13. Solve the following equation for $x$.

$$
x+1=\log _{4} 16
$$

14. Simplify the expression $10^{2} 108 x$
15. Solve the equation $y=e^{(\ln 3+2 \ln 4)}$

## CYPM

## 16. The demand equation for a product is defined by

$$
p=12^{1-.1 \bar{x}}
$$

Express $\bar{x}$ as $\bar{a}$ function of $\bar{p}$.
17. The following graphs are typical of what kind of function?


A


B

$c$

Homework Solutions
Prerequisite Inventory, Unit 3
1.

2.

3.

4.


Nō.
5. a. Domain : all reals

Range : all nonnegative reals
b. Domain : all non-zero reals

Range : all positive reals
c. Domain : all reals $\geq 5$

Range : all nonnegative reals

$$
\text { xVI.11. } 333.5: 2
$$

GMPM
6.

$(0,0)$ does not lie in a quadrant.
7.

8. a. 3/2
b. $=4 / 5$
c. not defined
d. 0
9. a. $f(x)=6 x-4$
b. $f(x)=-\frac{\bar{x}}{4}+\frac{9}{2}$
c. $f(x)=\frac{\overline{3}}{7} x+\frac{25}{7}$
d. $f(x)=\frac{8}{5} x-\frac{29}{5}$
10. B. $-\frac{1}{2}, 2$
b. $=\frac{4}{9}, \frac{5}{9}$
c. $9 / 28,-3 / 28$
d. $3 / 2,12$

$$
35.5
$$

1i. ${ }^{271,828}$
a is the yearly percentage increase
12. $\bar{r}=\frac{1}{2} \log _{e}^{(6 y)}$
13. $\bar{x}=1$
14. $\mathrm{x}^{2}$
15. 48
16. $\bar{x}=\bar{f}(\bar{p})=10\left(1-\frac{\log \bar{p}}{1.0792}\right) \quad \bar{o} \quad 10\left(1-\frac{\log \bar{p}}{\overline{10 g} 12}\right)$
17. a. exponential
b. iogarithmic
c. parabolíc

Lecture 3-0. Introduction to Unity 3

Introduction tó Unit 3 , Analysis of (X,Y) data.

## Lécture Content:

Introduction to the objectives; problem; and notation of Unit 3

## Man Topice:

1. Specific Introduction to the objectives of Unit 3
2. Presentation of General Problera of Unit 3
3. Notation for Unit 3

Note to Instrucior:
Unit 3 's primary pedogogic role is that of a precusor to regression. The lectures are set up to provide students with an intuitive grasp of fitting innes to ( $\mathrm{X}, \mathrm{Y}$ ) data so that the application of specific fitting algorithm do not seem like arbitrary operations. The essential notion remañ that of finding a model that fits the data and quantifies the effect on $Y$ of movement along the $X$ dimension. Exploratory procedures learned in earlier units are applied throughout.

Topic 1. Specific Introduction to the Objectives of Unit 3
I. Questions to be answered in Unit 3

1. What is an ordered multiple bstch?
a. A collection of batches related in some quantitative (i) way (as opposed to unordered multiple batches which are qualitatively related)
b. The ordered relation between batches is defined on some scale and used in the analysiss
c. Examples: life expectanciē for countries, classified $\bar{b} y$ per capita income of country; number of vehicles for transit systems, classified by the population served by system
2. What analyses can be done on an ordered collection of batches?
a. How can we best examine the batches by using the ordered scale of the batches
b. How can we summarize the information in the batches and the relationship between each batrh, and the value for the batch on the scale
c. How can we transform both the batches and the scale relation
3. What is an ( $X_{i}, Y_{i}$ ) paired observational batch?
a. Data set consisting of two batches of equai size
b. The ith observation of the first batch, called $X_{i}$, is related to the ith observation of the second batch; $Y_{i}$
c. We thus have a batch of paired observations, or ordered pairs $\left(X_{i}, Y_{i}\right)$
d. Examples: IC scores of twins; achievement pretest score ( $X$ ) and fall final exam score ( $Y$ ) for each member of this class
4. What analyses can be done on a batch of paired observations?
a. How can we best examine the scatterplot of $\left(X_{i}, Y_{i}\right)$ values

$$
355
$$

XVI.II. 37
b. How can we best summarize the relationship between the $X$ variable and $Y$ wariable
c. How do we determine whether a transformation of either $X$ or $Y$ or both would improve the sumarization
5. What is a batch of time series data?
a. ( $X, Y$ ) paired data set, where $X$ is time (months; years; decades etc.)
b. One Y will be associated with each X i.ē: impossible to have two or more observations at a single point in time
c. Exarples: Gross National Product of the U.S. for the years 194u-1976; dafly reported casés óf bwine fiu, January Sepiember 1976
6. What snalves can be done on time series data?
a. How can we smooth the data to remove irregularitíes
b. How and when can we extrapolate beyond the current time range, and interpolate between two adjacent time points
c. What cān we say about any periodicities within thé time series
II. Skills to be mastered in Unit 3

1. Perceiving and analyzing ordered multiple batches
2. Looking at scatterplots of (X,Y) dāta
3. Summarizing scattérplots by fitting linés
4. Smoothing thé irregularities in time rệiés dātā
5. Extrapolāting, interpolating, and studying the periodicities of time series data

$$
35 t
$$

Topićc 2. Introduction to the Prōiems of Unit 3
I. What ís an ordered muitiple batch?

1. Examplé: Average nét interest cost; in percent, for bond sailes for pubilic schools, by Bond Moody rating, for various years
a. Rélation: Percent interest for bonds, issued for pubife schools

Quantítative aspect: Bonds classified by their Moody Rating, Aaa-Ba
2. The Quantitative ordering is extremely important. We can associate for each batch in the collection a valué $\bar{X}_{i}$ on the ordered scale.
II. How can we best analyze the batches?

1. Obvious questions:
a. Minima
b. Mexima
c. Spreads
d. Medians
e. Shape
f. Units
2. Subtle questions:
a. What is a good typical value for each batch?
b. Conditionā on being in a specific batch; what is the typical value for the batch? We call these "conditional typical values"
$\bar{c}$. How are these conditional typicals used to sumarize the entire batch?
III. Whàt ís a batch of (X,Y) dātā?

Examplé: Number of vehicles and vehicle miles for transit systems serving populations over 1 million people, in 1971

$$
369
$$

a. X variable: Number of vehicies
b. Y variable: Transit system vehicle miles, in millions
c. 11 observations, 1 per transit systém
IV. How can we best summarize this batch of paired observations?

1: What can we learn from looking at the (X,Y) scatterplot? (8)
2. Do the data have a linéar point cioud?
3. Or does the point cloud have a peculiar bhape?
4. How do we effectively sumarize ifnear point clouds?
5. Can we transform nonlinear foint ciouds to make them more linear, and hence more easily summarized?
V. What is a batch of time series data?

Example: Total expensēs for Comunity Hospitals
a. X time variable: Year, 1950, 1955, 1960-1972
b. Y variable: Costs (in milifon \$)
$\bar{c}$ : 15 time points
VI. How cañ we better understand this time seriés?

1. What curve is traced by the time plot?
2. What curve remans after the data have been smoothed?
3. Can we extrapolate beyond the current range? What will (10) expenses look like in 1975? 1980? What were they in 1940?
4. Can we interpolate bétween two consecutive data points? What were expenses in 1953? 1959?
5. Are there any periodicities in the data set?
VII. Conclūsion: We need specific tools to use in analyses ồ each of these three data forms.

$$
301
$$

Topic 3. Introduction to the Notation of Unit 3
I. Ordered Batches

1. Capital letter ('Y") denotes data set
2. First subscript $\left(Y_{i}\right)$ denotes specific batch
3. $X_{\text {f }}$ denotes the value on the quantitative scaie associated with batch $\mathbf{Y}_{i}$
4. Second subscript $\left(Y_{i j}\right)$ denotes specific observation in a specific batch
II. ( $\mathrm{X}, \mathrm{Y}$ ) paired observation
5. Capital letters ( $X$ and $Y$ ) denote eācin bātch. Pāiring of batches is an underlying concept of multiplè regression, in which one dependent variāble (Y) is̄ explained by (paired with) several independent variables ( X 's)
6. A specific ordered pair is denoted by ( $X_{i}, Y_{i}$ ).
III. Time sériés data
7. Same notation as paired observations

Lecture 3-0
Transparency Presentation Guide

Lecture
Outline
Location

## Topic 1

Section I
$1 . a$
3.a
5.a

Section II

## 1.

Topic $\overline{2}$
Section I
1.

Section II
1.

Section III
1.

Section IV
1:
Section $V$
1.

Section VI
3.
-

Transparency
Number
Transparency Description

1
2
3
Ordered multiple batch
(X,Y) paired observational data
Time séries dáta

Topics for Unit 3

## Average bond interest costs

Plot of average school bond interest costs

> Vehicles and vehicle miles for transit system

8
Plot of vehicles and vehicle miles

> hospitals

Total expenses for communty

Plot of hóspital expenses

Ordered Multiple Batch

An ORDERED multiple batch of data is a élléction of two or more batches related in ag quantitative way.
$I_{N} U_{\text {NIT }}$ 3:
We learn to analyze multiple batches of data that ire ordered by examining "conditional typical wees -- a typical value for each batch that is representative of the batch.

Since the batches are ordered on a quantitative scale, we study how these "conditional typicals" vary with the seat.
$\left(x_{i}, y_{i}\right)$ Paired Observational Data
Paired Observational Data is a data set consisting of two botches, such that the th observation of the first batch is related to the itch observation of the second batch. We label the th observation of the first batch $X_{i}$, and the th observation of the second batch $Y_{i}$ and write the paired observation $\left(X_{i}, Y_{i}\right)$.

In Unit 3:
We plot the $\left(x_{i}, y_{i}\right)$ data, examine the resulting scatter plot, and summarize the seatterplot with conditional typical values, transforming if necessary.

$$
365
$$

Time Series Data
Lie Series Dots is a data set consisting of two batches. The $x$ batch is a time scale (days, months, years,ete.) and we have one $Y$ data value associated with each $X$ value.

In Unit 3:
We plot the time series data, smooth out unne cessary irregularities; extrapolate beyond the range of the data, interpolate between data observations, and study any periodicities, if present.

Topics for Unit 3:

1. Perceiving and analyzing ordered multiple 6 atches.
2. Looking at Scâtterplots of $(x, y)$ data.
3. Summarizing $(x, y)$ scat ier pots by filling lines.
4. Smoothing the irregularities in time series data.
5. Extrapolating, Inter potting, and studying the peridicities of time series data.

Average Net Interest Cost, in Percent, for Bond Sales for Public Schools.

Moody Rating


Each row is a year (1964-1974)

QuM

Average Net Interest Cost, in \%, for
Public School Bond Sales; Points are for Years 9404 -i9774.


ERIC

Numbers of Vehicles and Vehicle Miles for Transit Systems Serving Populations over 1 Million People; 1971.


Graph of Numbers of Vehicles and Vehicle Miles for Transit Systems serving
Populations over 1 million: iasi.
While miles
(in Millions)


$$
(3-0)
$$

Total Expenses for Community Hospitals.

Year	Amount(in Millions)
1950	2120.
1955	3434.
1960	5617.
1961	6250.
1962	6841.
1963	7532.
1964	8349.
1965	9147.
1966	$10,275$.
1967	$12,081$.
1968	$14,162$.
1969	$16,613$.
1970	$19,560$.
1971	$22,400$.
1972	$25,549$.

QRIPM
[10]

## Stod anonss for Commenity Mospita/s


(3-0)
XVI.II. 52

## Lēcturē 3-1. Analysis of Ordered Batches

Analysis of Orderéd Bātches: Thé perception, display, and sumarization of a collection of ordered batches

## Lecture Content:

1. Discuss the techniques for displaying two or more batches simultaneous1y
2. Introduce new measures ior the summarization of the relationship between the multiple batch and the ordered scale

## Man Topics:

ま- Disyiay of severai batches ordere si sule
2. Introduction of "conditonal typical values" to sumarize the batchēs
3. Discussín of the effectiveness of onditional typical values in 3 urmainzation.

37

GHFM

I. Basic Issue: Comparison of orderé multiple batches, using the natural scale

1. We know how to compare and transform unordered multiple batchés
 effective; consistent; and reifable manner
2. We need techniques to examine the batches; using the scale associated with the collection
II. Problem: Cān we simply usé the comparison tools of Unit 2 for unordered bātches?
3. Specific questions to be answered are similar to those for unordered batches
4. What do we do about the riex ē nature of the batches?
5. As usual, a condensation of the information in the batches should follow f̈rom an organization ō the collection

4: We organize thé bātches as in Unit 2, but our condensation utilizés the natural scale
III. Solution: Organize Parallel Schematic plots of the batches with posituming determined by the scale
IV. Method

1. We familiarizé oursélves again with the de īnition of an ordēred multiplé bātch: a collection ōf two or more batches that are related in a quantitative way
2. We look 二t some hypothetical examples: life expectancies for countries classified by per capita income; number of vehicles per transit system, classified by population served
3. Here is a real example that we shall examine:
a. Number of Live Births, classified by the age of the mother at the time of the birth
b. Batch observations are various years, 1950-1967

$$
3 \div
$$

XVI.II-54
4. We plot the observations on an ( $X, Y$ ) plane
a. $X_{i j} \bar{\equiv}$ Value on scale for batch $i$
b. $\mathbf{Y}_{\mathbf{i} \bar{j}}=$ Observation $j$ in batch $i$
c. $X_{i j} i \bar{s}$ constant over all $j$
d. Scatterplot for Live Birth data
i. $X_{i j}$ not well defined--given as range; é.g., 24-29 years
ii. Let $X_{i j}$ be the midpoint of each interval; ē.g., 25-29 years interval hās $X_{i j} \equiv 27$
iii. X for Over 45 and Under 15? Arbitrary; use 47 and 13
5. Next draw a schematic plot for each batch--centered at (4) the correct $X$ for each batch
6. Width of box = width of interval associated with the corresponding $X$
f. ihus we have organized each batch, using the position of rich batch on the $X$ scale
8. "Ordered" Parallel Schematics wirn CMI-DAP
a. Unfortunately the plots cannot be positicned properly
b. Treat each batch separately, and cut and paste each schematic on a piece of graph paper, in the proper place
9. Plotting the raw data with CMU-DA?
a. Create a $X_{i}$ data file, constant for a given $i$, to PLOT against thé $Y_{i j}$ multiple batch values.

375

## GMPM

Topic 2. Conditional Typical Values to sumarize the batches

1. Basic Issue: Once organized into parallel schematics; how can we sunmarize each batch
2. The "pattern" of the schematic display is very important in the rnalysis
a. Do the plots increase? If so, is the increase roughly linear; or is the functiu.il relation of higher degree
b. Do the plots decrease? Again, what is the functional form of the decrease?
3. We want to pick one value from each batch to study further the pattern of the batches
II. Problem: What value do we use for our sumarization?
4. The value should ba representative
5. If the spread of each batch was zero, we would have no problem in choosing a set of typical values
III. Solution: Use medians, our gocifriend:
6. The typical value for $Y_{i j}$ depends on the batre. $\bar{X}_{i j}$ vaiue
7. We compute typical values of yif, "Conditional" on being located in batch i--"conditional typicals"


8. For our ifve births examplé-hēre are the conditionai typicals
9. We çan locate each condítionai typical within each batch on the ( $\bar{X}, Y$ ) scatterpiot, and connect them
10. We study the form of the ine segments on this connected plot
11. Hinges aloo help in our study--we can locate the hinges, (7) id connect them
12. Specific cuesifan: Do the ifne segments connecting the conditional typicals form a ilief?

3!n
XVI.II. 36
9. Secondary question: Are the spreads of the batches constant?
10. In a later lecture, we transform both $X$ and $Y$ to
a. Promote linearity of the conditional typicals
b. Equalize spread within the batches
11. Conditfonal Typicals constructed with CMU-DAP
a. Mereiy use SUMMARY to find medians, and draw them in on your scatterplot

$$
375
$$

pir 3. Endecfueness of Conditional Typical Values ir Sumarization
I. Basic Issue: Assessing how well conditional typicals describe the data set

1: The breaking up of data into $E \mathrm{it}+$ Residual has been discussed
2. For ordered batches: $Y_{\text {if }}$ data value $=$ Conditional Typical
for batch $i+$ Residual
3. Fit $=$ Conditional Typical for batch $i$
4. How much is left after we subtract the fit from each data value?
II. Probleni: How do we analyze the batcin of Residuals from the fit

1: Residuāis should not be large réative to the fit
2. The batch óf résiduals should be
a: Symmetric
b. No obvious outifers
c. Close to well-behaved
III. Solution: Analyze the residuais as a single batch using the tools of Unit 1.
IV. Meihods

1. Back to our example-residuals from conditional typicals (:) for live birth data
2. Stem-and-Leaf Display of Residuals. Note large number of zeros; ēñ à few outifers
3. Schematic plot añ aumber sumary very hépfur-note symmetry and outifers
4. Another example: Average net interest costs, in percent, for bond sales for public schools. Entries are for years, 1964-1974
5. Find conditionai typicais, plot the values, and find resicuals

$$
3: 9
$$

XVI.II. 58

Lecture 3-1
Transparency Presentation Guide

Lecture Outline Location

Beğinning
Topic 1
Section IV
3.
4.
5.

Topic 2
Section III
6.
5.
7.

## Topic 3

Section IV
1.
2.
3.
4.
5.
5.

8

9
10
11

12

13
.

Transparency Number

1

2a
2b

3

4

5

6

7

Transparency Description
Lecture 3-i Outine

Number of live Births by age of mother, 1950-67

Piot of Live Birth data
Parallei schematic plōt of live birth data

Conditional typiài values for live births

Conditional typicai values connected

Hinges and conditional typicals connected

Residuals from fíts for live birth data

Stea-and-leaf of residuals
Schemati= plot of residuals
Average interest rates for school bonds
remditanal typleals for school icra interest rates
-ditiss: typicals cunaected

Xir.2.

Leetwe 3-1
Analysis of Ordered Batches: Perceiving, Displaying and yum arising a collection of orders batches.

Lecture Content:
4Disecuss the toehnigues for displaying two or more ordered batches simult aneously:
2) Introduce new measures for summarizing the relationship among the bataties, using the ordered scale.

Main Topic as:
4) Display several batches ordered on some seattle.
2) Introduce "conditional typical values to summarise the batches:
a) Discuss how well the conditional typicais convey the characteristics of each bated.

Number of side Births, by Age of Mother for $1850-1667$.
Age of Mother, in years.


352
XVI.11. 61

QMPM
$[2 b]$
Number of Live Births, by Age of Mother for 1950-1967
Age of Mather, in year's

38.3
(3-9)
XVI.TT. 62

Number of Live Births by Age of 99 other, 1950-1967


ERIC

QMPM

Bonted Sebenotic pet ef live Binth by Hge of Mottior


$$
3 s,
$$

Live Births by Age of Mothor Conditional Typical Values, or "Fit" for Each Age Class


GMPM



ERİC

Number of Live births by Age of Mother,1800-1967 Medians and Binges Connected.


Live Births by Age of Mother
Residuals from Conditional Typicals
Residual = Data Value - Conditional Typical
(Residuals uni $=10$ thousand births)

0	-140	-180	-45	-90	-40	-10	0
0	-120	-140	5	-50	-25	-5	0
0	-120	-120	-10	0	-10	-5	0
0	-100	-90	50	10	-5	0	0
0	-80	-50	55	40	10	0	0
0	-80	-40	50	40	15	0	0
0	-40	15	65	45	25	5	0
0	-10	50	15	50	35	5	0
0	-5	55	40	30	30	5	0
0	10	85	30	20	20	5	0
0	25	115	30	10	30	5	0
0	40	135	16	0	25	10	0
0	40	135	-20	-40	5	5	0
0	30	145	-40	-70	-10	0	0
0	25	130	-60	-95	-20	0	0
0	30	20	-140	-150	-50	-5	0
0	60	-20	-140	-190	-80	-10	0
0	35	0	-200	-250	-100	-15	0

$3 £ 9$

Stw-and-Leaf Display of Rosiduals fom Condifional Typicals for Live Birth Data. $U_{n i t}=10,000$ Live Eirths


QMPM
[10]
Schematic plat and Number Sumimary of Residivals
-aso for live Eirth data.
3144
391

Average Net Interest Cost in Percent, for Bond Sales for Public Schools, Medians circled.

Moody Rating


Rows represent years, 1964-1954

Q MM

$$
[12]
$$



Average Wet Interest Cost, in \%, for Public School Bond Sales, Egerias are for Years 1964-1974; Conditional Typical Values Given.


$$
\begin{aligned}
& 30.4 \\
& \text { xui.ii. } 73
\end{aligned}
$$

GMPM

Lecture 3-2. Looking at (X;Y) data
tooking à ( $\overline{\mathrm{X}}, \mathrm{Y}$ ) data: Analysis by reorganization of ( $\mathrm{X}, \mathrm{Y}$ ) paired observation data

## Lecture Content:

1. Discussion of how ( $X, Y$ ) paired observation data may be viewed as an ordered multiple batch
2. Sumarization of the ordered batch representation of the ( $X, Y$ ) data set by fitting a line to the conditional typical values

Main TOpICs:

1. Viewing àn (X,Y) data set às an ordered collection of "mini= batchēs"
2. Fitting a line to the conditional typical values by using three mini-batches

Tool Introducēd:
Resistant Line

$$
395
$$

Topic 1．Viewing an（ $X, Y$ ）data set as andered collection of＂mini－ batches＂

I．Basic Issue：Consideration of a data set of paired observations as an ordered multiple batch

1．We know the characteristics of an（ $X, Y$ ）paired observation data set：two batches of which the ith observation of one is related to the ith observation of the other

2．We have already presented various examples of these data sets：IQ scores of twins；scores on the pretest and the final exam for each member of the class

3．We now have a good feel for ordered multiple batches and the sumarization of the batchēs with conditional typical values

4．Can we analyze an（ $X, Y$ ）dātā sèt as ān ordered multiple batch and thus condense it by the use of conditional typicals？

5．Example：Percent illitērāte in the population；by state， in 1930 （ X ）and 1960 （ Y ）

We shall use this data set in future discussions

II．Problem：How do we break up an（ $\mathrm{X}, \mathrm{Y}$ ）dātā set into multiple batches？

1．We use the $X$ variable as the ordered multiple batch scale
2．The number of batches is of course arbitrary－depends on the number of obsērvations，$n$ ，in the data set

3．As limiting casēs：
a．Use n mini＝bātchēs： 1 batch pér $X$（or distinct $X$ ） value
b．Use only 1 batch－Y becomes a single batch of numbers
4．We choose the number of batches so that the corresponding intervals on the $X$ axis are：
a．Boundè by intēgèrs
b．Approximately equal width（if possible）
c．Containing equal numbers of $Y$ values
5. A scatterplot of the (X,Y) data is always the first step in the analysis
a. The plot hélps to determine where to break up the $X \quad$ axis
b. Here is the scatterplot for our ilifteracy data-d (3) note linear pattern (important)
íl: Soiut and their location along the $X$ axis should be determined by a scatterplot of the observations
IV. Method: Using the Ililteracy data

1. Here are the mini-batches
à. If $X_{i}$ is less than $2 \%, \bar{Y}_{\dot{I}}$ is in batch $\overline{1}$
b- If $X_{i}$ is between $2 \%$ and $4 \%$; $\bar{Y}_{i}$ is in batch 2
c. If $\bar{X}_{i}$ is between $4 \%$ and $6 \%, \bar{Y}_{\dot{i}}$ is in batch $\overline{3}$
d. íf $\bar{X}_{i}$ is between $6 \%$ and $10 \%, \bar{Y}_{i}$ is in batch 4
e. Íf $\bar{X}_{i}$ is greater than $\overline{10 \%}, \bar{Y}_{\dot{i}}$ is in batch $\overline{5}$
2. Thus have 5 batches, 3 of equal width $2 \%$; 1 of width $4 \%$; i of width 10.5\%
3. The inequality in width was forced by the ciustering of the data points at the left end of the plot
4. Here is the data set arranged into our mini-batches. Batch observations are the 1960 ; \% illiterate (Y) values (4)

5: We merely analyze this rearrānged dāta sét as an ordéred multiple batch
a. Parallel Stem-and-Leaf shows incrēāing pattern;
few outliers
b. Parallel schematics drawn so that width of box width of interval. Spreads increasēe
c. Compute conditional typical values

Batch	1	$0.9 \%$
Batch	2	$1.6 \%$
Batch	3	$2.2 \%$
Batch	4	$3.45 \%$
Batch	5	$4.35 \%$
		$39 \%$

$=$ d. Plot these values and the hinges, connected on a separate plot. Very linear, eyeball slope $=.3$ (7)
6. In conclusion, the connected conditional typical plot is very informative
7. However, if this plot is linear, we would formally like to fit a line as a final summarization

Topic 2. Fitting a line to the conditional typical values
I. Basic Issue: Formalization of the analysis of ( $X, Y$ ) paired observational data by fitting a line

1. We want to know exactiy how varies with $X$; i.e., if $Y=f(X)$, what $\overline{\mathrm{i}} \overline{\mathrm{s}} \mathrm{f}$ ?
2. We hope that $\bar{f}(\bar{X})=\bar{a}+\bar{b} \bar{X}, \bar{a}$ inne
3. If $f$ is not iñe, perhaps we can transform $\bar{x}$ andor Y to make it so. We dícuss these transformations in the next lecture
4. Note that $\bar{Y} \bar{i} \bar{s} \bar{a}$ function of $\bar{X}$. In some cases this is obviously 80. But $X$ could also be a function of $Y$ !
5. In some ways, which variable to use as the dependent variable (which variable is a function of the other) is arbitrary
II. Problem: How do we find the $a$ and $b$ in the equation $Y=a+b x$
6. We would like to use the conditional typical values in the fitting process
7. How many mini-batches do we use?
8. Which two points in the connected conditional typical plot do we use to draw the inne?
III. Solution: Use three minf-batches of roughly equal size and connect the first and last conditional typicals
IV. Method: Resistant Iñe
9. The ifne is known as resistant ine, due to Tukey. It is a fitting procedure that is resistant to outliers in the data
10. Proceduré: appifed to ilifteracy Data
a. Break the data into thirds according to the $X$ ( illiterate in 1930) values-eeasy rule to apply to find endpoints of our 3 intervais. If the number of observations is not divisible by 3, put the extra 1 or 2 in the middle miníbatch. That is not necessary in this case.
b. Find Médian $\overline{\mathrm{X}}$ and Median $\overline{\mathrm{Y}}$ in ēach third

Médan $\bar{x}$ = mídpoint of intervai
Median $Y=$ condttional typical of the batch
XVI.İI. 78
c. Labē these threé médian pairs

$$
\left(X_{(1)} ; Y_{(1)}\right),\left(X_{(2)}, Y_{(2)}\right) ;\left(X_{(3)}, Y_{(3)}\right)
$$

 will actually be paírē togethér in the of íginai data.
d. Locate these thrēe points on the scatterplot, and connect $\left(X_{(3)}, Y_{(3)}\right)$ and $\left(X_{(1)}, Y_{(1)}\right)$. This is the
e. Formally calculāté
$\overline{\mathrm{B}}=\left(\mathrm{Y}_{(3)}-\mathrm{Y}_{(\mathrm{i})}\right) /\left(\mathrm{X}_{(\overline{3})}-\mathrm{Y}_{(1)}\right)=\frac{3.2}{9.6}=0.33$
$a=\operatorname{Median}\left(Y_{(1)}-b X_{(i)}\right)=\operatorname{Median}(0.43 ; 0.63,0.43)=0.43$
$f$. Examine fitted ine on the scatterplot. Note how (10) well it fits (except Alaska)
g. Line may need to be "polished" or adjusted slightiy for a better fit.
3. To determine how well the line fits the data, we calculate residuals:

$$
\begin{equation*}
\bar{Y}_{\bar{i}}=a=\bar{b} \bar{X}_{\bar{i}} \tag{11}
\end{equation*}
$$

4. This batch of residuals is extremely important in assessing the fit. Treated as a single batch, rē̄iduals should be symuetric about 0, with no outliers. In other words; residuals should be well behaved, mean $0 . s t a n d a r d$ deviation indeterminate.
5. Line constructed with CMU-DAP

Use function LINE. Options to save fitted values and residuals.

QMPM
Lecture 3-2
Transparency Presentation Guide

Lecture Outline

Section IV

4.	4
5.a	5
5.b	6
5.¢	7
Topic 2	
Section IV	
$2 . a$	8
2.1	9
2. $\overline{\mathrm{f}}$	10
3.	$1 i$
5	12.

Location

Beginning
Topic 1
Section I
5.

Section II
Transparency Description
Lecture 3-2 Outline

$$
\begin{aligned}
& \text { Iiliteracy Data, per. State, } \\
& 1930 \text { and } 1960
\end{aligned}
$$

5.b
3

$$
\begin{aligned}
& \text { Ziliterate } 1930 \text { vs. \% } \\
& \text { Iiliterate } 1960
\end{aligned}
$$

\% IIIIterate 1960 classified into Mini-bat ches

Stem-and-Leaf dísplays of initeracy Mini-batches

Schematic Plot of illiteracy Mini-batches
Connected Conditional Typicals for 1960 Illiteracy Data

Ilifteracy Data; broken up into
thirds
Thirds of iliferacy data and connected conditional typicāls
$\bar{Z}$ Iiliterate 1960 v $\bar{Z}$ İilteraté 1930

Iiliteracy Data, Residuals

Rēsiduais, Stem-andoleaf

$$
411
$$

Lecture 3-2
Leaking at $(x, y)$ data: Analysis of $(x, y)$ data sets by reorganizing the data into a collection of ordered batches.

Lecture Content:
i) Discussion of how to arrange an $(x, y)$ data set into in ordered multiple batch.
2) Summarization of the ordered multiple bate data set by filling a line to the condition typical values.

Main Topics:
L) Viewing an $(x, y)$ data set as on ordered collection of "mini-batches."
2) Fitting a line to the conditional typical values by using only throe mini-batches.
aMP
Illiteracy Data [2]
$x=7$ of population illiterate in 1930
$y \equiv \%$ of population illiterate in 1960

XVI.İ. 82

## WIIliterate ras (i) piotled agoinst \% INitente rea(x). One point per state.

(3)


$$
\begin{equation*}
4!4 \tag{3-2}
\end{equation*}
$$

Pereant Illiterate, 1960, clossified into min'-batches by 1930 percent


Parallel Stem-and-Leaf Displays of Mimi-batches of 1960 Illiteracy Data

$$
\begin{aligned}
& \text { unit- } 1 \%
\end{aligned}
$$

$1930 \%$ Illiterate
amin


Illiteracy Data, Conditional/ Typica/s for Mini-Batehes Comected solid Line and Hinges Connected (Dashed Line).

(8)

Illiteracy Data, broken ip into thirsts, using $X$


ERIC

Illiteracy data, braten wo into thirds. Conditional twicals given as nedion y in
each third. first and thind conditional
trpieal connected. (theng khid duistont Linc).

XVI.II. 89

GMPM
\% illiterate $1 \% 0(y)$ plotted against
(10)
$\%$ illiterate 1830 (x)
One point per state, with filled line \%illiterate 1860

XVI.İI.90

## Illiteracy Data, Residuals from Resistant Line (II)



Stem-and-Leaf of Residuals from Resistant Line

$$
\begin{aligned}
& \text { unit : } 10 \\
& \text { Lo 1-4.26 }
\end{aligned}
$$

## Lecture 3-3. Sumarizing Scatterplots

Sumarizing Scatterpiots óf (X,Y) data: Transforming (X,Y) data sets to improve the linear fit, and fitting lines by least squares.

## Lecture content:

1. Transformations of (X, $\overline{\mathrm{Y}}$ ) data setes
2. Least Squarē Principie and coéfficient éstimatés
3. Assessing the fít

## Main Topics:

i: Transformations to improve linearity and equalize spread
2. Fitting a line using least squares
3. Looking for paterns in the residuals

Tools Introduced:

1. Least Squares
2. Resíduāi plots

## Topic 1. Transformations to improve Linearity and Equalize Spread

I. Basic Issue: Transforming data to make a fitted line a good summary

1. Paired observational data are rarely linear in the raw form
2. In addition to this noninearity, the spreads of the constructed mini-batches may not be equal
3. We seek to transform the data to:
a. Improve Linearity
b. Equalize Spread
4. Both these goals are important, and should be sought whenever possible and necessary
II. Problem: How do we achieve these 2 goals?
5. Linearity is (ubually) increased by transforming the $X$ variable
a. Transforming $X$ to higher powers has the effect of stretching the $X$ axis, which promotes linearity in plots that resemble exponential functions ( $\mathrm{e}^{\mathrm{x}}$ ) or ( $-\mathrm{e}^{\mathrm{x}}$ )
b. Transforming $X$ to small powers has the effect of shrinking the $X$ axis, which promotes linearity in plots that resemble negative exponential functions ( $e^{-x}$ ) or ( $-\mathrm{e}^{-x}$ )
6. Spread is often equalized by transforming $Y$; imilar to transformations to equalize spread with muitiple batches
7. Our conditional typical values should bé useful in choosing good transformations, since the plot of the values "mimics" the patterns of the ( $\mathrm{X}, \mathrm{Y}$ ) scatterplot
III. Solution: Use (median X; median Y) points from the three thirds for resistant lines
8. We divide the data into thirds on the basis of the $X$-values, keeping each $Y$ with its paired $X$-value
9. We then have 3 sample points

$$
\left(X_{(1)}, \bar{Y}_{(1)}\right) ;\left(X_{(2)} \cdot Y_{(2)}\right) ;\left(\bar{X}_{(3)} ; \bar{Y}_{(3)}\right)
$$

which are the medians of the 3 mini-batches
3. The effect of transformations on the data set can be seen by merely transforming the 3 sample points
4. Seek a transformation so. that the slopes:

are equal:

$$
\overline{o r} \quad \frac{S_{1}^{-}}{S_{2}^{-}} \approx 1
$$

IV. Methō

1. Example: Per capita Income (X) and Infant Mortāity (Y)
2. Scatterpiot shows both nonlinearity (curve has ex shape) (3) and disparity in spread
3. Mini-batches of data are constructed
4. Mini-batches are plotted via Parailei Schematic Display--
discreoancies from ideal situation are evident
5. Comecting the Conditional Typicals and Hinges is quite
6. Recall Tukey 's diagram for determining which direction to move in our transformations. Transforming $Y$ can also help improve innearity
7. However, we first concentrate on transforming $X$ for ifnearity: If necessary, we then transform $Y$ to equalize spread and possibly promote increased linearity
8. As mentioned, we take the three resistant inne sumary points, and examine the line connecting the first and second, and the line connecting the second and third
9. When the slopes of these lines are equal, we have the appropriate transformation of $X$, and $Y$
10. The calculations for our example: log; log appears best (6)
11. Scatterplot of log (infant mortality) vs $10 \bar{g}$ (income) is very linear

QRPM
12. Fitted resistant line $Y=3.33=.59 \mathrm{X}$
13. Residuals̄ are nice and tight around zéro, except for 2 lärge valuē (Libya and Sāudi Arabiā)
14. In conclusion, we study the ēffect on the schematic piots of the miñ-betches of the log $\bar{X}$ and $\log \bar{Y}$ transformations
a. log (X) has shrunk the $X$ scale, and increased innearity (9) ;
b. log(Y) has défiñítéy equalized spread
(12) $0:$
c. Put them both together, and plot looks véry good

## Topic 2. Fitting a line using least squares

I. Basic Issue: Presentation of the Least Squares Principte

1. Resistant line ís just one method of fitting a iñé to an ( $\bar{X}, \bar{Y}$ ) point chioud
 deviant points
2. The "ćlassical" fitting procedure ís known as "least squares"
3. In récent years least squares has come under attack becausé it īs very sensitive to outilérs
II. Method
4. The least squarés principlé finds the line which has the minimum value of the quantity:

$$
\begin{equation*}
\sum_{\bar{i}=1}^{\bar{n}}\left(\bar{Y}_{i}-\overline{\hat{a}}-\hat{\hat{b}} \bar{x}_{i}\right)^{\overline{2}} \tag{12}
\end{equation*}
$$


3. Since the residuals are used in the procedure, they are very important in assessing how weil the line fits
4. Here is the geometrical interpretation of least squares: Note that we minimize the squared distances of the points from the in̄̄e
5. The least squares line will be a good fit when:
à. Dāta ange linearīy related
b. Spread about the line is constant
c. No outliers.
6. How do we assess the fit?
a. Examine the residuals--stem-and-leáf, plot vs $X$ (bee Topic 3)
b. Examine variance about the line:

$$
\bar{s}_{\mathrm{y} / \mathrm{x}}^{2}=\frac{\Sigma\left(Y_{i}-\hat{\mathrm{a}}-B \mathrm{X}_{i}\right)^{2}}{\mathrm{n}-2}
$$

We want this as small as possible
c. Examine one minus the ratio of residual variation to the total variation of $Y$ :

$$
\bar{r}^{2}=\frac{\Sigma\left(Y_{i}-\hat{a}-\bar{B} X_{i}\right)^{2}}{\Sigma\left(Y_{i}-\bar{Y}\right)^{2}}=\overline{1}-\frac{s_{\bar{Y} 1 x}^{2}}{\bar{s}_{y}^{2}}
$$

This is the "percent of variance" explained.
7. Least Squares ine for Infant Mortality data:

$$
\bar{Y}=3.11-.512 \mathrm{X}
$$

Slope differs from résistant siope
8. Residuals slightly more tight around o than with resistant (16) line
9. Least Squares with CMU-DAP

Use function MREG:

491

Topic 3. Looking for Patterns in the Residuals
I. Basic Issue: What should the batch of residuals resemble?

1. Batch óf residuals should bè:
a. Symmetric ásout zèro
b . Devoid of outilers
2. That is: batch should be well-behaved
3. Plotted against $X$, rēsiduals should bé a random swarm of points; with no pattern
II. Method: Residual Plots
4. Plot of residuals (Y) vs $X$ for Infant Mortality data-no (17) pattern evi.dent; two high outliers are apparent
5. Patterns to look out for
a. Trigonometric (Sinusoidal)
b. Sign patterns
c. Wedge shape
d. Linear
e. Curves
f. Deviants

422

Lecture 3-3
Transparency Presentation Guide

Lecture   Outine   Location	Transparency Number	Transparency Description
Beginning	1	Lecture 3-3 Outline
Topic 1		
1.	$\begin{aligned} & 2 \\ & 2 a \end{aligned}$	Income and Infant Mortality Rate for Nations
2.	3	Scatterplot of Income and Infant Mortality
4.	4	Schematic plots of Infant Mortality
5.	5	Conditional Typicals for Infant Mortality data
10.	6	Determination of Transformation for Infant Mortalities
11.	7	Scatterplot of Logged Infant Mortality data, with Fitted Line
13	8	Stem-and-Leaf of Residuals
14.a	93	Schematic Plot-X transformed
14.b	10.	Schematic Plot--Y transformed
14.c	11	Schematic Plot--X and Y transformēd

Topic 2
Section II
1.

12
4.

13
6.

14

7.	15	Least Squares Line of Infa   Mortality
8.	16	Residuals from Least Squar   Lines
$\frac{\text { Topic 3 }}{\text { Section } 11}$	17	Residuā Plot for Infant   Mortality Data

42

LECTURE 3－3
Summarizing Seattecplets of（ $x, y$ ）data：Transforming $(x, y)$ data sets to improve the linear fit，and fitting lines by hast squares．

Lecture Content：
\＄D Discussion of transformations of $(x, y)$ data sets．

2）The Least squares principle and estimates of the coefficients．

2）Assessing the fit．

Main Topics：
i．）Transformations to improve linearity and aguative spread．
2）Fitting a line using best squares．
高 Looking for patterns in the residuals．

INCOME INFANT MORTALITY RATE FOR NATIONS

Incoome		Income	mOFANT
13426	16.7	\# 1760	27.8
3350	23.7	302	79.1
3 346	17	2526	22.1
4751	16.8	727	26.2
50\% ${ }^{\text {¢ }}$	13.5	631	13.6
3312	10.1	295	32
3403	12.9	684	60.9
5040	20.4	507	46
2009	17.8	784	34.1
2298	25.7	334	66.1
5292	17.7	1268	20.4
4103	11.6	1256	15.1
3723	16.2	261	19.1
4102	11.3	732	26.2
9.56	$4{ }^{4} 8$	434	76.3
NA	$N A$	799	40.4
5596	9.6	406	43.3
2963	12.8	310	259
2503	17.5	430	86.3
5523	17.6	360	78.5
1191	59.6	110	125
425	170	1280	139
590	78	560	28.1
426	62.8	3010	300
725	54.4	180	58
406	48.8	1530	650
		1240	51.7
		193	60.4
$498 \quad(3-3)$			

QMPM

INCOME I INFANT MORTALITY RATE FOR NATIONS


# Scatterplat of Per eqpita Income vs. Infant Mortality 

 for NationsInfant
Mortality


Schematic plots of batehs for Infout Martaity Abte

(5)

## Conditional Trpicals end Hinges for Batehes of Infont Mortaity datu



Determination of Transformation of Infant Mortality Data
$X=$ National Income in Dollars
$Y=$ Infant Mortality Rate


Plot suggests transforming $x$ dean elfor $y$ down.


Resistant Line Fitted to Log (Infant Mortality) for Nations


Resistant Line: $y=-0.59487 x+3.32525$

433
(3-3)

MEM

Stem-and-Leaf of Residuals from Resistant Line (8) Fit of Log (Infant Mortality) vs. Log (National Income) unit = . 1


435
(3-3)

Sciemetic Pho of Butios. X tranofirmod.
(9)


Sclumatic Pobt of Butcin. Y trandimad. (i0)

( $5 \rightarrow 8$
43.

GMPM


ERIC

LEAST SQUARES
Hypothesized relationship:

$$
y=a+b x
$$

Least squares principle:
FIND the $\hat{a}$ and $\hat{\delta}$ such that the quantity $\sum_{i=1}^{n}\left(y_{i}-\hat{a}-\hat{b} x_{i}\right)^{2}$ is at a minimum.
ie:, we find the line that avioivizes the sum of the residuals snared.

The last squares estimates:

$$
\begin{aligned}
& \hat{b}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
& \hat{a}=\bar{y}-\bar{b} \bar{x}
\end{aligned}
$$

The residuals from the least fivares line:

$$
r_{i}=Y_{i}-\hat{a}-\hat{b} X_{i}
$$

help us assess how well the line tit the data.

Geometrical interpretation of Least Squares:


The least squares line minimizes the soured distrmes of the data points from the line.

We have the "decomposition".
data value $=$ fitted value tresidual

$$
Y_{i}=\hat{Y}_{i}+\left(Y_{i}-\hat{Y}_{i}\right)
$$

The least squares line minimizes the sum:

$$
\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

$$
\begin{equation*}
(3-3) \tag{409}
\end{equation*}
$$

XVI.1主. 114

How well does the kist squares line fit?
We examine:
a) All in residuals from the tine
2) The residual variation, or variance about the fine:

$$
s^{2} y \left\lvert\, x=\frac{\left.\sum^{\left(y_{i}-i-p\right.} x_{i}\right)^{2}}{n-2}\right.
$$

MOTE that over all possible lines, $S^{\prime} y y^{\prime} x$ is at a minimum.
2) 1 minus the ratio foridual variation to the total variation of $V$ :

$$
A^{2}=1-\frac{\sum\left(y_{i}-a-5 x_{i}\right)^{2}}{\sum\left(y_{i}-7\right)^{2}}=1-\frac{b^{2} y_{i} x}{3^{2} y}
$$

This is interpreted as the percentage of total variation that we have "explained" by filling the bine.

$$
\frac{411}{\text { xvi.II.115 }}
$$

least squares Lie for infant Mortality Dole


Least Squares Line: $y=-0.511798 * x-3.10715$

Residuals from the Least Sguares Line infont Montally Data
unit $=.1$


$$
\begin{aligned}
& 41! \\
& \text { xvi.11.1i7 }
\end{aligned} \quad \text { (3-3) }
$$

Plot of Residuals from the Least Squares Line vs. $\log$ (Income) for Infant Mortality Data

(3-3)

ERIC

Lecture 3-4. Analysis of Time Series Data

Analysis of Time Series Data: Smoothing time series data with little Structure, and studying and summarizing time series data with substantial structure

## Lecture Content:

1. Smoothing time plots to remove irregularities, and identifying any periodicities in the data
2. Fitting lines to time plots, and extrapolating and interpolating apparent trends

## Main Topics:

1. Smoothing Time Plots
2. Summarizing Time Plots

Tools Introduced:
Running Medians of $\overline{3}$ Smoother

417

## Topic 1. Smoothing Time Plots

I. Basic Issue:. Time Series Data may have quite a bit of "noise"

1. Time series data consist of paired data; where the $\bar{x}$ value is a time scale=-days, months; years, etc.
2. We generally have only one $\bar{Y}$ observation for each $\overline{\mathrm{X}}$ value
3. Such data sets can be quite irregular, hāving many peaks and troughs, when plotted
4. We need to be able to find the pattern of the data (if present) by filtering out the irregularities; or "noise"
II. Problem: How do we bést identify any patterns in the data
5. Time series data are comoniy collected. We can think of many examples: U.S. Groses National Product for the years 1946-1976; daily réported number of swine flu casés, JanuarySeptember 1976; Dow Jones averages in à 30 dāy period
6. Ne need techniquēs applicāble to all these instances
7. W. Towid like to average a time seriés data set to remove nuse
8. The ate 2 distinct methods of averaging
a. Unting Apragés
b: Ri. ?, Averogē
9. Monchl. avá"ges uccur when datā are collected daily and then are sumited or averaged so that only one data value is reportac for each month
10. Similarly, can average monthly data to get yearly data, yearly dita to obtain decade data, etc.
11. Such averaging is quite helpful and often used; however there is a great reduction in number of observations $(30 \rightarrow 1 ; 12 \rightarrow 1$; etc. $)$
12. We prefer the use of running averages, हincē such los̄s does not occur
III. Solution: "Smooth" the data by taking running medians of three
13. Smoothing has become quite popular in the last 10 years because it is easy to do and is effective
14. We have chosen a very simple smoother-running medians of 3 --which works well even though it is simple
IV. Method
15. Example: Emergency Room registrations at D.C. General Hospital, 1970-1975. Monthly data
16. The first step is always make a time plot of the data
a. Note the many peaks and troughs
b. Data appear to increase until 1973, then fall
c. Very difficult to compare years because of irregularities
17. Wè shall smooth the data to remove these
a. Write down the data in one colum on the left margin of a page
b: Take 3 values consecutively and record their median; for the second data value 8120; record med 7476 ; 8120 , 7706) $=7706$
c. Continue through the data, taking 3 at a time
d.. Endpoints? Merely copy the end value. Tukey has other suggestions
e. Continue the smoothing until the ith mooth is identical to the (i-1)st smooth. These data requíred 3 smooins
f. From Git smooth to the next; we need only record those vislues that change
18. Plot th smoothed data; and study it

1: Hospití dat̄ bimilar from year tō year
ii: Rises; סonks in summer, then fails
iii: 1973 disinctly higher; 1971, 1975 distinctiy lower nuaber of registrations; and divide to obtain \% of ail registrations that are emergencies
a. Thēs ata are more similar, and their plot has less (7) pati:

QMPM

$$
\begin{align*}
& \text { b. We smooth these percentages and plot them }  \tag{8}\\
& \text { i: Shape is similar to before; peak in sumer, low } \\
& \text { in winter } \\
& \text { if. Hence conclusions are similar to conclusions from } \\
& \text { raw data }
\end{align*}
$$

5. Note that these data had little trend or linear increase; we could not fit a line to them. In the next section, we analyze data with more pattern
6. Smoothing with CMU-DAP:

Use function SMOOTH

$$
45
$$

Topic 2. Sumarizing Time Plots
I. Basic Izsue: Describing thē trends in time seriés data

1. After smoothing the data, if there is evidence of time trends, we should transform the data (if necessary) and fit aine
2. Spectfic issues are

ब. Extrapolation: can we say anything about the data beyond the range that we have?
b. Interpolation: Can we estimate a value for à time point lying between 2 time points for whích we have data?
3. Data with substantial structure are much easier to extrapolate and interpolate than data that are mostly noise
4. Are there any monthiy, Beasonal, etc. trends? These are called periodicities, and if present, should be noted
5. Finaily, how does ( $X_{\dot{I}}, Y_{\bar{i}}$ ) relate to $\left(X_{i-1} ; Y_{i-1}\right)$ ?
II. Problem: Are there any problems unique to time series data?

1. With only one $Y$ value for every $X$, equally spaced $X$ 's, trends are much more evident than with ordinary ( $X, X$ ) data
2. The study of periodicities and extrapolation and interpolation presents no difficulties; however one must use caution, because drawing conclusions from a data set is a "delicate" matter
III. Methods
3. We study another examplé: per capitā expenditures for household electricity in the U.S., 1929-1972. Data are in hundred $\$ /$ person
4. Data reveal añ exponential trend
5. Take iog (Y) and find a reasonably inear trend
6. Fitted line has equation:
$\log Y=0.06 X-7.29$

$$
451
$$

5. Note cyclical pattern of residuals from ine-this pattern is an example of a 20 year period: high in $m$ 1935, low in 1945, high in 1955; low in 1965
6. Residuals as à schematic plot look fine
7. However, plottéd against $\bar{x}$, the periodicity is revealed!
8. Extrapolation is reasonably easy, because the line is an (il) adequate sumary
9. Interpolation is also straightforward, but remember periodicities!
10. A further examplé: Number of physicians in the United States, 1850-1973
a. Data on U.S. population reveal that increase has not been constant with the population
b. Suppose we plot $\left(X_{i}, Y_{i}\right)$ as a function of $\left(X_{i=1}, \bar{Y}_{i-1}\right)$ : we let our $Y$ variable be $Y_{i}$ and our $X$ variable $Y_{i-1}$
c. Plot is amazingly linear:
i. $Y(\bar{t}-1)$ can be used to make good predictions of $Y(t)$
ii. The regression of $Y(t)$ on $Y(t-1)$ is a "lagged regression", and the knowledge that this regression is good is quite useful

453

Lecture 3-4
Transparency Presentation Guide
Lecture
Outine
Location
Beginning
Topic 1


Topic 2
Section Mi
\(\left.\begin{array}{lll}1. \& 9 Per Capita Expenditures for <br>

Household Electricity\end{array}\right]\)	Log Per Casita Electricity Expenditure

Lecture 3-4
Anacrusis of Time Secies Dote: Smoothing time series data with lithe structure, and studying and summarizing time series data with substantial structure.

LECTURE CONTENT:
s-maithing time plots, and identifying any periodicities is the oblate
2) Filing ties to time plots, and axtropoteting and interpolating parent trends.

MAIN TOPICS:

1) Suncothing time plots.
2) Summarizing time plots.

$$
\begin{aligned}
& 4.5 i \\
& \text { xv1.11.126 } \\
& (3-4)
\end{aligned}
$$

Module II
D.C. General Hospital

Emergency Registrations (Calendar Year)



Bucoaing	Mediens of fer Smoathed D.e Ceneral [4a] thespital Amengainey Bugistontion			
1480				finit
7476	7476			7476
8120	7706			7706
7706	8003	78545		7854.5
8003	98545	8003		8003
NA	8416			9406
$88: 9$	8835			8835
8841	8841			8841
9103	9032			1032
1032	9032			1032
8443	8568			8562
8562	8473	8562		8562
7914	7914			7914
1971				
7412	7114			7914
7979	7480	7914		7914
7480	7979	7753	7914	7914
8288	7753	7979		7979
7753	8256	8074		8074
8256	8074	8256		8256
8074	\% 256			8256
\% 324	8354			8324
8788	8324			8324
	8346	8357		8324
-346	8148			01148
782	785 \%			7822
1972				
7620	78 2う			7822
1706	7620	7822		7822
7214	8706	9719		7999
8264	780	8264	8151	8151
7919	8264	8151	8264	8264
8700	815	8264		8264
8151	8700			8700
8977	8977			897
9742	8977			8977
8294	3782			8792
8792	8294	879		$17 \%$
8239	8781			87\%2





[8]
[04]
485


[ 104
PER CAPITA EXPPNDITVIES PCR HOUSENOLD ELEETRISITY os 192r-197a



410

(Hise Hem



18
[川]
455

[13]

[3.4] $4: 2$

[14]
[5-4]

47


```
Homework, Unit S
```

 dēsired, $\overline{\text { a }}$ : deal family $\overline{\mathrm{s}} \mathrm{ize}$. The data below show the total number of birthè expected by married women 18-39 years old by age group and race for the yeare 1965-1972:
(a) Consider ing éach age group as a epparate batch; construct parallel stem and leaf displays for each of the four batches. Calculaté the five number summariés for each batch and dis. play these under the corresponding stem-and-ieaf display. What patterns (íf any) do you observe?
(b) Draw parsilé schematic piots for the four batches: do you find any additional differences in expected births?
(c) Redraw the parallé schematic piot and connect the médians; hinges, and extreme values on this graph as done with the ordered multiple batches in ciass. What can you learn from the piot? Which graphic presentation ( (a), (b); or (c)) makes these patterns (or lack of them) most obvious)?
(d) Look again at the raw data. Suggest two other possible ways in which the data might be examined. पint: Abov\% we expoored a relationship between expectec irths and of wives.

(e) What do you conclude about the relationsifp between expected births and a marifed woman'sage? What inpilcations can you draw from your analysis regarding the demand for élementary school teachers in the next 10 years?

2: The foitokng sixs show the number of empoyees on nor agriculturā payrolis xer fix joars 1951-1973 for the 11 states comprising the "old south."
(a) Consider each year as a batch. Cāculate the $\overline{5}$ number sumary for each batch. You may wish to cut the data values to tens of thousands. If you order the data (cut or raw) what unusual fact stands out? (Hint: identify the ordered data by state). Why might this be 80 ?
(b) Draw a paraliel schematic plot for the twelve batches. What trauds (if any) do you observe?
(c) How does the number of employees in non-agriculture jobs change over time? What implications does your analysis have for the employment structure of the "old south?"

$$
47
$$

QMPM
(1) Total number of Births Expected by Married Women 18-39 Years old by Age Group añ Race 1965 to 1972

Agé Group (yrs.)	21	27	32	37
Yeár Race				
White				
1972	2.2	2.4	2.8	3.2
1971	2.4	2.6	2.9	3.2
$197 \overline{197}$	2.6	2.7	3.0	3.2
1967	2.9	3.0	3.2	3.2
1965	3.1	3.3	3.5	3.3

Black

1972	2.4	2.8	3.7	4.0
2971	2.6	3.1	3.7	4.2
1970	2.9	3.2	3.8	4.1
1967	2.8	3.4	4.3	4.2
1965	3.4	4.0	4.4	4.1


3. The following data show total school budgets for various towns in the Pittsburgh area and the total number of pupils in the corresponding school :systems. (The Pittsburgh district is deleted since it is considerably larger than any of the others):
(a) Considering the number of pupils as the $\overline{\mathrm{X}}$ variable, make a scatterplot of the data: What can you learn from the plot?
(b) Group the $X$ values into mini -batches. (One possible grouping would be 0.1.9, 2.0-2.9, 3.0-3.9, 4.0-5.9, 6.0. Draw a parallel schematic plot. What patterns (if any) do you observe?
(c) Determine the conditional typical values. plot these values on separate graph. What trends (if any) do you see? How well do the conditional typicals summarize the information in the mini-batches?
(d) Calculate the residuals from the conditional typical and analyze as a single batch. Do the residuals indicate any "lack of fit?"
(e) What relationship between school budget and number of pupils does your analysis suggest?

District	Budget	Pupi 15	District	Budget	Pupile
Allegheny valley	\$ 4,866,760	2,415	McKeesport	\$11,825,045	8,139
Avonworth	3,185;000	1;865	Montour	$17,436,496$	8,139 4,269
Babcock	4, 795,500 $14,248,615$	2,922	Moon	9,098;485	5,183
Bethêl Park	$14,248,615$ $15,001,891$	8,515	ML . Lebsmon	14,992,283	7,815
Brentwood	15,$001 ; 891$ $3 ; 284 ; 971$	$8 ; 776$ $1 ; 807$	North Allegheny North-inils	13,308,965	7, $6 \underline{65}$
Carlynton	5,288,313	2,910	Northgete	$13 ; 793 ; 726$ $4,822,199$	8;104
Chastciérè Valley	10,658,743	5,715	Penu Hilla	-20,242,552	2,693 13,480
Churchili	8;468,331	4;799	Plua	8,997,000	13,480 6,020
Clairton	3,430,498	1,956	Quaker Valley	4,984,400	6,020
Cornell	3,408,583	$\underline{1,416}$	Riverview	3,382,934	1;986
Deer Lakas	$4,937,707$ $2 ; 514 ; 094$	3,082 1,530	Shaler	14,636;498	9,205
East Allegheny	6,310,000	1,530	South Allegheny	4; 522; 672	3,171
Edgewood	1,655;497	- 3 - 859	South rayet	2;502,741	1,283
Elicibeth-Forward	-7,360,243	5;071	Steel Valley	3,932;238	2;382
FCx Chapel	11,876,197	6,074	Steel Vox	$6 ; 915 ; 120$ 5,$185 ; 295$	3;514
GuEway	14,717,000	8,508	Suissvile	5,185,295 3,686,749	2,999 $\mathbf{2 , 0 4 0}$
General Braddock	4; $\overline{5} 51,796$	2;668	Tūtle Criek	2,739, 724	2;040
Haxpton	5,470,700	3;229	Upper St Clalr	2,739;724	$1 ; 505$ 5,349
Highlands -	8,781,000	5,338	West Allegheny	9,862;247 5,126,134	5,349 3,410
Reyatone 0ake	$\overline{8}, 140,801$	4,930	Weat Jefferion hille	7,093,055	3,410
			Weat Mifelin	9,706,912	5,808
			Wilkinaburg	6,496,542	3,570

Source: Pleciburgh Prene, July 10, 1976

QMPM
4. The following data show the violent crime index rate per 100,000 population for various American urban rapid transit systems in 1970.
(a) Scatterpiot the data (consider population the $\bar{x}$ variable). What pattern (if any) do you see?
(b) A common transformation for populations is log. Looking at the raw data, do you think that this is an appropriate transformation? Why or why not?
(c) Scatterplot the transformed data. What pattern (if any) do you вee?
(d) Fit a resistant ine to the transformed data and plot it on the scatterplot from (c). Is it a good fit?
(e) Calculate, plot (vaX), and examine the residuals: What do they tell you about the fitted ine?
(£) Polish the line once. Plot the polished line on the scatterplot from (c): Does it appear to be a better fit than the line fitted in (d)? Calculate; plot; and examine the residuals from the polished ifne:
'g) Compare this residual plot to that in (e). Which shows a better fit?
(h) What conclusions can you draw about the relationship between violent crime rate on transit systems and city population?


## QMPM

5. The following data how the number of reported cases of mumper month for 1972 and 1973.
(a) Scatterplot the data (remember, the $\bar{X}$ variabie here is time). What trends (if any) do you see?
(b) Smooth the data with runing medians of $\overline{3}$.
(c) Discuss the periodicity of the time series.
(d) How many cases of mumps do you think were reported in March 1974? August 1974? December 1974? February 1975? September 1975?
(e) What implications can you draw from your analysis regarding when during a year spot commercials should be run on th to convince parents to get mumps vaccine shots for children?

Reported Cases of Mumps in the US

	1972	1973
January	$918 \overline{4}$	7160
February	$892 \overline{1}$	7349
March	10806	8306
Aprí	$966 \overline{3}$	6434
May	9929	7404
June	5483	5045
July	2634	2030
August	1799	1357
September	1480	1068
October	$264 \overline{1}$	2456
November	$541 \overline{8}$	4759
December	6205	5751

Source: Center for Disease Control, Morbidity \& Mortailty, Voi. 23.
6. The following data give median incomes of persons 25 years old or older by years of school completed and by sex for the US in 1973.
(a) Make a catterplot of root median income (Y) against years of school completed ( $X$ ). What relationship (if any) do you observe?
(b) Calculate the regression inne for income vs. years in school for MEN ONEY, Plot this line on the scatterplot you drew for (a): Does this line confirm or contradict the relationship you observe in (a)? Calculate and plot the residuals. What do you conclude about this model from the plot of the residuals?
(c) Caiculate the regression ine for income vs, years in school for WOMEN ONLY. Plot this ine on the scatterplot you drew for (a). Does this line confirm or contradict the relationship you observe in (a)? Caiculate and piot the residuais. What do you conciude about this sodel from the piot of the residuals?
(d) Caiculate the regression inr. for income ve, years in achool for both men and women (iae, combine ali the data into one batch): piot this inne on the scatterplot you drew for (a):
$\therefore$ Caiculate and piot the readiuais. fow "welli" does this iñe fit the data? Do you paster this single ine or the two Individual linés found in (t) and (c), and why? How important is the person's sex in fitisng a model to this data?
(e) Whā pōícy impincations do you dérive fárom your analysis concerning the differential status of men and women in the us?

Median Annual Income of Persons 25 years old and over by Years of School completed and by Sex for the USA 1973


QRIPM
7. The following date show the number of reported ceses of venereal Disease (Gonorrhea and Syphilis) per year for 1962-1974.
(a) Scattōplot the dāta (remenber, the $X$ variable here is TIME). What trends (if any) do you see?
(b) Interpolate to find the number of cases in 1970 of Syphilis and Gonorrhea.
(c) Plot $Y(t)$ ves $Y(t=1)$. Whāt does this̄ plot tēll you?
(d) How many cā̄ē of gonorrhea do you estimate will be reported in 1976? How many of syphilis?
(e) If you were designing new public health programs to reduce the incidence of venereal disease what comparative emphasis would you make over the next ten years regarding syphilis and gonorrhea? What aspects of your analysis would you use to convince a group of concerned lay people of the correctenes's of your policy?

Reported Cases of $\overline{V D}$ per year for 1962-1974 ©

Year	$\begin{gathered} \text { \#cases syphitis } \\ (\text { in } 1000 \sigma) \end{gathered}$	\# cases gonorrhea (in 1000s)
1962	126	264
1963	124	278
1964	114	301
1965	123	325
1966	105	352
1967	102	405
1968	96	465
1969	92	535
1971	96	670
1972	91	767
1973	87	843
1974	84	899

Source: Center for Disease Control, Morbidity \& Mortality vole. 20; 23 \#53

$$
\begin{array}{r}
\mathrm{XVI} .11 .150 \\
4 \mathrm{SG}
\end{array}
$$

1. Birthe expected by wives 18-39 years old by age.


Apparent trenc towards increase in expected births with increasing agé
(b) (See plot) Same trend is more apparent. (Rate of increase levels off.
Variability decreases.) Variability decreases.)
(c) (See plot) Théplot with the connecting ines shows the same trends it is a matter of opinion which piot makes these trends most obvious; probabiy the best case can be made for plot (c), with the connecting lines:
(d) Expected births vs. race (Black $\overline{\text { ( Whe }}$ White trend).

- Expected births vs: year (Decreases with year).
(e) As a wann's age increases (and also the number of children shé already has) the total number of children she expects to have iñ reases.

Since we do not know from these numbers wiether the number of chindren of elementary chool ge is increasing (over time) we cannot use these numbers for predicting the demand for elementary ochool tachers In the future.

But note that expected family ize is certainiy less in 1972 than In earifer years; hence; the number of elementary schooi gé children will probably decrease in the future; causing à decreasé In demand for tezchers.

$$
\text { XVI.II. } 151 \overline{9}:
$$

QMPM


491
1.c) Number of births expected by wives 18-39 years old by age

hinges and median extremes
sōiqd iñe dāshéd iñé

40

XVİ-1主-i53

2(a) Employeea on Non agricultural payrolia values ordered and cut (tena of thounande)

Year	1951	1953	1955	1957	_ 1959	1961	1963	1965	1967	1969	1971	1973	State
extreme	--		--			--							
	31	31	32	33	35	37	41	45	49	53	54	61	(Ark)
	33	34	35	36	39	40	44	48	53	56	59	67	(Mias)
hinge	50	54	53	54	56	58	63	68	75	$\overline{81}$	$8 \overline{6}$	98	(SC)
	66	69	70	75	76	77	81	88	95	100	102	113	(Ala)
	66	71	72	80	78	78	81	90	100	104	106	117	(La)
median	75	84	86	88	90	93	100	110	121	130	135	153	(Tean)
	80	85	91	97	100	103	112	121	133	141	155	174	(V)
hinge	86	90	95	99	103	105	113	125	139	153	160	179	(G])
	87	92	96	110	116	120	129	143	160	174	181	201	(NC)
	98	102	105	115	127	133	144	161	181	206	224	275	(F1])
extreme	210	222	229	245	251	254	270	292	325	359	359	414	(TX)

5 number aunariea

extree	31	31	32	33	35	37	41	45	49	53	54	61
hinge	58	61.5	61.5	64.5	66	67.5	72	78	85	90.5	94	105.5
uedian	75	84	86	88	90	93	100	110	121	130	135	153
hinge	$8 \overline{6} .5$.	91	95.5	104.5	109.5	112.5	$12 i$	134	149.5	163.5	170.5	190
extreme	210	222	229	245	251	254	270	292	325	359	369	414
Eidaprand	$2 \overline{8} .5$	29.5	34.0	40.0	43.5	45.0	49	56	64.5	73.0	76.5	84.5
312 H	43	45	51	60	65	67	74	84	96	109	115	127

Note thit relative ranking of states renilns mime (posstbly reftects total population) each year. Alao that spread Increases.


$$
\begin{array}{r}
\mathrm{xvI} . \mathrm{II} .155 \\
495
\end{array}
$$

2（b）Note that the \＃employees on non－agricultural payrolls increases over time for all of the states（in fact the 非 employees on non－ agricultural payrolls roughly doubles between 1951 and 1973）．
（c）See also（b）bove：Since the rise in employees on nonagricultural payrolls may be due＂only＂to the general rise in population，we have insufficient data to draw conclusions about the changing employment structure（if indeed it is changing）in the old south． We might wish to examine possible changes by comparing the annual rate of increase of 非 employees on nonagricultural payrolls with either rate of increase of total population（by btate）or rate of increase of 非 employees on agricultural payrolls；or even both．

3(a) School budget cieary increases with the number of papils in the school eystem. There is a strong ifnear pattern.
(b) The trend noted in (a) above is also striking in this piot.
(c) Use the median of each mini-batch. The plot looks like that in (b) but with less information (we lose information on the spread of each mini-batch). The pattern is still apparent.
(d)

Lo	-52.5
-2	43
-1	51521
$-0 * *$	664909534194
$0 * *$	0122200134081403477
1	0402
2	0
$-H 1$	60.0

5 Number Summary of Restauals

1	$E$	-52.5
12	$H$	-6.0
23	$M$	0
12	$B$	$4: 0$
1	$E$	$60: 0$

Residuals afe relatively symetric. They cluster around zero,
(e) Clearly budget increases with the number of students: Using a resistant inne with one step of poilsh, the students: Using
summarized as approximately sumarized as approximately y $=20000 \mathrm{x}$

$$
40
$$

## QMPM


XVI.II. 158


QMPM
4. (a) The crime rate index increases with center city population. There is, however, quite a bit of variation--even within cities of similar size:
(b) The data have a shape which suggests that we should transform $X$ down: Log (X) is not unreasonable.
(c) The crime rate index increases with log center city population In a very linear fashion:
(d) The unpolished resistant line is

$$
\text { Crime }=-4381.6211+(945.2319) \text { (Log Population) }
$$

(e) A very noticeable trend in the residuals is that the absolute value of the residual increases with the size of the log center city population. (Note the increasing divergence of the data from the fitted ine as log(pop) increases. Otherwise the fit is "pretty good")
(f) The once-polished resistant line is

$$
\text { Crime }=-3629.6418+805.4307 \text { (Log Population) }
$$

There is a siight difference between the unpolished and polished lines; but the fit appears to be about the same.
(g) Same comments as (e): The two residual plots appear to bé very similar:
(h) The violent crime index rate on transit system increases with population: This relationship can be described approximately by the fitted model (resistant ifne)

$$
\text { Crime }=-3629+805(\log (p o p)):
$$

The model fits best for areas with smaller populations.

$$
\hat{3} i j
$$




PPLDT CRIME US LPGP
Modinie: $\boldsymbol{I}$


PLOT R2 US LPOP

PLOT K3 US LPOP
$\qquad$

## QMPM

5. (a) There are fewer cases of mumps in 1973 than in 1972 , and there are monthly or seasonal effects.
(k). Reported Cases of Mumps.

Month	Data	Smoothed once
J 72	9,184	9,184
F	8,921	9,184
$\bar{M}$	10,806	9,663
$\overline{\text { A }}$	9,663	9,929
$\overline{\mathrm{M}}$	9,929	9,663
J	5,483	5,483
J	2,634	2,634
A	1,799	1,799
S	1;480	1,799
0	2;641	2,641
N	5,418	5,418
D	6.205	6;204
J 73	7,160	7,160
F	7,349	7,349
M	8,306	7,349
A	6;434	7;404
M	7-404	6;434
J	5;045	5;045
J	2;039	2,039
$\overline{\text { A }}$	1,357	1,357
5	1,068	1,357
0	2,456	2;456
N	4,759	4,759
D	5,751	4,751

(c) Lows occur in sumer months (July; August; September; (October))

Highs occur in winter/spring months (December; January, February, (March); (April):

Note the decreasing overail trend.
(d) Minch $74 \sim \mathbf{7 0 0 0}$

Feb. $75 \sim 5000(?)$
Aug. $74 \sim 1100$
Sept. $75 \sim 1000(?)$
Dec. 74. $\sim 5000$
(e) One should run comercials month or two prior to the expected onset of mulus (to allow time for parents to get their children vacinated and to $\frac{1}{\text { illow }}$ time for the children to develop the imunity from the disease.

The data suggest nidsumer (July) for these spots to beging with an exhortation to get children vaccinated (before school starts in September):

511


## 511



513

6 a) The scatterplot suggests a trend of increasing median income with increasing education. If we code the points for men and women, we can readily see that men's incomes are greater than women's incomes at each level.
b) Root (Median Income (Men)) $=52.20+3.94$ (Years of School Compieted)

The ine confirms the increasing trend in men's median income with years of school completed. It also accents the apparent differences in men's and women's salaries for comparable levels of education.

Residuais: |  | -1.16 |
| ---: | ---: |
|  | -3.90 |
|  | 1.25 |
|  | 4.60 |
|  | .67 |
|  | 2.82 |
|  | -.44 |

There is no noticeable pattern in the plot of the residuals. The least squares inne seems to fit quite well:
c) $\begin{aligned} & \text { Root (Median Income (women) } \\ & \text { pieted) }\end{aligned}=23.55+3.37$ (Year of School Com-

The inne confirms the increasing trend in women's median income with years of school completed. The slope, being less than the slope of the ine for men, indicated that the average additional income from one more year of education is less than that for males.

Résíduals: 6.25
-3.39
$-4.00$
-. 98
-3.17
1.36
3.58

There is no noticeable pattern in the plot of the residuals. The least squares lines seems to fit well but the residuals are larger than in the case of men's incomes.
d) $\begin{aligned} & \text { Root (Median Income (all) })=37.87+3.65 \text { (Years of School Com- } \\ & \text { pleted) }\end{aligned}$

Resíduals:
Men
Women
14.82

- 9.2
12.73
-19.97
18.45
-21.15
22.38
- 18.69
XVI.II. 169

$$
517
$$

19.02	-21.45
21.75	-17.48
15.68	-16.39

The residuals are strongly positive for those points correspond= ing to men's incomes and sitrongly negative for those points corresponding to women's incomes. The two lines clearly provide a superior aumanary of the data. However, if we are asked to predict average incomé, regardless of sex, we would want to use the regrēssion line for both sexēes.

If we are given the sex of an individual we can predict median income with much greatēr accuracy than if we are forced to use the equation derived from the combined data (barring bilid luck). Compare the $\bar{s} u m \bar{s}$ of the absolute values of the residuals from the two regréssion linés às opposed to the one: 41.53 versus 238.16.
e) There $\bar{a} \bar{r} \bar{e}$ sevéral pos̄sible rēāons for the disparity in median Incomes between men and women.
-There may be job discrimination āgāns̄t women (e.g. lower level of job àssignments dēspite equal training; lower pay for the same job).
-Women may tend to concentrate their studies and take jobs in fields which typically pay lēss than those fields which intēēēt men.
-More women than men of compārable education may decide to not market thēir skills (è.g. become home-makers)

These three explanations, as well as others, all probably contribute to the disparity. Further study is needed to confirm or deny each. The job discrimination possibly is of particular concern since this is an illegal practice and could be dealt with in the courts in specific cases. The policy implications of the latter two explanations are less clear since they may or may not involve a sex-related choice. It may be that if women tend to stay out of particular fields of work or study some type of effort; such as a publicity campaign directed towards women should be undertaken to bring their talents into the field (e.g. the military has recently been trying to attract female volunteers).

$$
515
$$

\# $6 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$.

Root (Total Annual Income) vs Years of School Completed


## 6.bje; PLONS OR RESTDOLSS PEREGS AGE


7. (a) Gonorrhea has been increasing over time, while syphilis has been declining.
(b) For 1970: $\frac{92+96}{2}=94$ thousānd (Syphilis)

$$
\frac{535+670}{2}=602.5 \text { thousand (Gonorrhea) }
$$

(c) The lincar relātionship implies that à good prediction for the number of cāsēs in à givēn year cañ be based on thé number of càses during the previous year.
(d) Syphilis: 78:80 thousand (decrease of 2-3 per year)

Hênce: 1972-1971 97

$$
\begin{array}{ll}
1973-1972 & 76 \\
1974-1973 & 56 \\
1975-1974 & 3 / 4(56)=45 \\
1976-1975 & 3 / 4(45)=36 \\
& 45+36=81
\end{array}
$$

Gonorrhea: 980 thousand (\# increases by about $3 / 4$ of previous years increase)

$$
(899 \mp 81)=980
$$

(e) Clearly, Gonorrhea is fär more prevalent. Further, while the lncidence of Gonorrhea is increasing ("out of control"), that of Syphilis appears to be on the decline ("under control").

- Note, however, that the data appear to fodicate that the rate of Increase of Gonorrhea is leveling off.

Since the spread of $V D$ is crucially dependent on the number of individuals infected, clearly Gonorrhea will require a greater Amount of effort to bring under control.

$$
510
$$

## 7e)





```
Quiz Unit 3
```

Time $=60$ minutes
Suggested problem times given. Credit is roughly proportional to these times.

Part I. Answer 5 of the 6 following questions ( 15 minutes)
(1) Give two possible reasons why the $Y$ observations in an (X;Y) data set ahould be transformed.
(2) How does an ordered multiple batch differ from an unordered multiple batch?
(3) What representative point is used as a "conditional typical value" in a mini-batch?
(4) How do "outlying" data values affect a least squares line and à resistant line?
(5) What are "residuals" from a line fitted to an ( $\mathrm{X} ; \mathrm{Y}$ ) data set ?
(6) According to the study cited by Tufte, what factors affect voting rates in American cities?

$$
52 \overline{2}
$$

## QMPM

Pāt II. Answer 2 of the following 3 questions. ( 20 minutes)
(1) Which direction do we move on the ladder of powers and for what variables, if the scaterpiō of the raw data resembles:




e) $y$

$$
{ }^{\text {XVI.II. } 178} 525
$$

(2) What do these residuals from a polished fit imply about how well the linear model fits the data (x-variable $=\mathrm{X}, \mathrm{y}$ - variable = résiduals)?
a)


c)



XVI.II. 179

526

## QMPM

(3)


This graph is from Louis Battan's articlē, "Cloud Seeding and Rainmaking." (Statisticses: A Guide to the Unknown, $\overline{\mathrm{pp}} .354-3 \overline{6} 1$ ).
(a) What problem does Battan discuss? What solution does he propose?
(b) Interpret the graph. (A complete answer will include a description of the plotted points, a discussion of goodness of fit, and the implications for Battan's hypothesis.)

527

## $\%$

Part III: Answer 1 of the followng 2 questions ( 25 minutes)
(1) Consider the following data set on U.S. Coal Production (from J. Tukey, Explorstory Data Analysis, Chapter 7).

year	coal production
1955	$46 \overline{7}$ milion tons
$\frac{6}{7}$	500
8	493
$\frac{9}{9}$	410
1960	412
1	416
2	403
3	422
4	459
1965	467
7	512
8	552
	545

Note that the production for 1966 is not available.
(a) Smooth these data until the ith smooth is identical to the ( $1-1$ ) th smooth: Merely use the actual data values for end points.
(b) Interpolate to find coal production in 1966.
(c) Extrapolate to find coal production in 1969:
(d) Are there any apparent trends in these data?

## QMPM

(2) Consider the following data set on 1976 and pre-1976 malpractice insurancé premiums for Greater Boston hospitals and health cénters (from D: Hoaglin, A First Course in Data Analysis, chaptēr 5).
(thousands of \$)

Institution
old
premium
418
1220
169
$\overline{8} \overline{6}$
$83 \overline{3}$
2263
255
136
162
66
350
Harvard Community Health Plan 192136
New Eng iand Deaconess 435
Harvard Community Health Plan 192136 348

Let $x=$ old premium, and $y \equiv$ new premium. We have calculated

$$
\begin{array}{ll}
\overline{\Sigma x_{\bar{i}}}=7365 & \overline{\bar{x}}=\overline{566.5} \\
\overline{\Sigma x_{i}^{2}}=8719409 & \bar{y}=423 . \overline{7} \\
\Sigma \bar{y}_{i}= & \\
\bar{\Sigma} y_{i}^{2}=4752590 & \\
\Sigma x_{i} y_{i}=6432511 &
\end{array}
$$

(a) Find least squares estimates of the coefficients for the linear model relating y to $x$ :
(b) Would a resistant ine be very fifferent from the least squares line for these data? Why or why not?

## Quiz Unit 3

Solutions

1. 2. Y observations in an ( $X, Y$ ) data set may be transformed to equalize variance or to promote linearity.
1. The batches in an ordēred multiple bātch are relāted in a quantitative way, while those in an unordered batch are related only in a qualitative way.
2. We use the median of a mini-bātch as the "conditional typical value".
3. An outlying value pullés à leās̄t squārē̄̄ line towārdse it but has very little éffect on à resistant line.
4. A residuā from a fitted line is thē obsērved $\bar{Y}$ value minus the fitted $Y$ value.
5. The factors which affect voting rates are:
(a) closeness of election
(b) ease of voting
(c) socioeconomic factors
II. 1. (a) Up on $\bar{X}$, down on $\bar{Y}$
(b) Down on $X$ and $Y$
(c) Down on $X$., up on $Y$
(d) $U p$ on $X$ and $Y$
(e) No transformation necessary
6. (a) Good fit
(b) There is still level to be removed
(c) There is still tilt to be removed
(d) The data needed to be transformed
(e) Slope and level have been removed, but spread of the residuals increases as $X$ increases. A transformation of y would be appropriate
7. (a) Battan discusses potential drought and proposes cioud seeding as a way to increase rainfall.
(b) The plot is of the square root of rainfali for target area ( $Y$ ) and control area (X). Each-point representes a month; the " $x$ " point represents the month during which cloud seeding took place in the target area. The fíticd line describes the data wili. Impiying that the target and control areas are well-matched. Since the seeded month is not an outifer, Battan's experiment provides no proof that cloud beeding does increase rainfail.
```
<

QMPM
III. 1. (a) \begin{tabular}{rlcc}
Data & First Smooth & Final Smooth \\
& 467 & 467 & 467 \\
& 500 & 493 & 493 \\
& 493 & 493 & 493 \\
& 410 & 412 & 412 \\
& 412 & 412 & 412 \\
& 416 & 416 & 412 \\
& 403 & 422 & 416 \\
& 422 & 469 & 422 \\
& 459 & 489.5 & 459 \\
& 467 & 532 & 467 \\
& 512 & 548.5 & 589.5 \\
& NA & 545 & 532 \\
& 552 & & 545
\end{tabular}
(b) Interpolated value is 532 million tons.
(c) There are several extrapolated values for 1969 which make sense. You may argue that coal production is leveling off at 545 million tons. You may argue that coal production is gradually fincreasing and will be approximatēy 551 millíon by 1969.
(d) Coal production is increasing over time. There may bē \(\overline{p e r i o d i c i t i e s ; ~ b u t ~ w e ~ d o n ' t ~ h a v e ~ e ̀ n o u g h ~ d a t a ́ a ~ t o ~ t e ̂ l l . ~}\)
2. (a) \(\overline{\hat{B}}=\frac{\Sigma\left(\bar{x}_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum x_{i} y_{i}-\bar{x} \Sigma y_{i}-\bar{y} \Sigma x_{i}+a \bar{x} \bar{y}}{\sum x_{i}^{2}-2 \bar{x} \Sigma x_{i}+n \bar{x}^{2}}\)
\[
\begin{aligned}
& =\frac{\sum x_{i} \bar{y}_{i}-\bar{x} \Sigma y_{i} \bar{y} n \bar{x}+n \bar{x} \bar{y}}{\sum x_{i}{ }^{2}-2 \bar{x} \Sigma x_{i}+\Sigma \Sigma x_{i}} \\
& =\frac{\Sigma x_{i} y_{i}-\bar{x} \Sigma y_{i}}{\Sigma x_{i}{ }^{2}-\bar{x} \Sigma x_{1}} \\
& =\frac{6,432,511-566.5(5508)}{8,719,409-566.5(7365)}
\end{aligned}
\]
\(=.7284\)
\[
531
\]
```

\hat{\alpha}
= 423.7-.7284(566.5)
= 11.06

```
(b) No, a resistant line would not be very different. A plot of the data shows that there is a linear relationship between old and new premiums, with no outliers.

\[
\div 532
\]

QMPM

Untit 4
Reading Assignments
\begin{tabular}{|c|c|}
\hline Lecture & Reading \\
\hline 4-0 & Prerequisite Inventory \\
\hline 4-1 & Tufte, pp. 135-148 \\
\hline 4-2 & Wonnacott \& Wonnacoty, pp. 1-24, 53-67 \\
\hline 4-3 & Tüfte, pp. 156-163 \\
\hline 4-4 & No reading \\
\hline
\end{tabular}
\begin{tabular}{cc}
Workshop & \begin{tabular}{c}
Handout: "What to took for in Reading Technical \\
Reports"
\end{tabular} \\
\(4-5\) & Handout: "Covariances and Independence in the \\
\(4-6\) & Bivariate Muitiple Regression Model" \\
\(4-7\) & Tufte, pp. 148-155 \\
4
\end{tabular}

In addition, read the following articies:
Kapian, Robert, and Samuei Eén̄̄ardt, "Determinants of physician office Location," Medical Care, Vol. II, No. 5, Sept.-oct. i973, ppp. 406-415.

Kaplan, \(\bar{R}_{i}\), and S. Leinharde, "The Spatial Distribution of Urban Pharmacies," Medicai Caxe, Vol. XIII, No: 1, Jan. 1975, PP. 37-46.

Lave, Judtth Ro, and Samuel Lénhardi, "The cost and Length of a hospital Stay;" Inquisy; Voi. XIII; Dec. 1976; PP. 327-343.

Lave, J.R.; and S. Leinhardt; "An Evaluation of a Hospital Stay Regulatory Mechanism;" AJPH; Vol: 66; No: \(10 ; 1976 ;\) pp. 959-967.

Texts:
Tufte; Edward R: pata Analysis for Politics and Policy; Englewood cliffs, N.J.: Prantice-Hail; Inc.; 1974.

Wonnacott, R.s. and TiH. Wonnecott, Econometrics, New York: John Wiley and Sons, 1970.
```

533

```

\section*{Prerequisite Inventory, Unit 4}

Unit 4 of Module if is concerned with multiple linear regression, i.e., the fitting of innear models relating many \(\bar{X}\) variables to a single \(\bar{Y}\) variable. As in the previous three units, the ability to master the concepts and techniques in unit 4 is dependent upon the mastery of several simple mathematicai ideas: Before proceeding to Unit 4, you should be very familiar with the topics discussed in this inventory.

This inventory is divided into the following sections:
1. Review of Units 1 and 2; Batches of Data.
2. Review of Unit 3, Univariate Regression:
3. Representation of a data set as a matrix.
4. Matrix manipulations:

This unit depends heavily on Unit 3: If you feel that you do not have a good understanding of this prior unit, please consult a member of the course's teaching staff for additional tutoring.

Section 1: Review of Units 1 and 2; The Analysis of Batches of Data
A good revtew of the concepts and techniques of the first module of QMPM is given in Section 1 of Prexequisite Inventory, Unit 3. Detail concērnigg the construction of number summaries; schematic plots. and stem= ànd-leāf displays is presentē thēré; às weli as a review of important terminology. You should reread this section since this material is important for the proceedures and conceptes ōf Unit 4 .

Number sumaries; schematic plots, and stem-and-leaf displays may be drawn in parailel when analying multiple batches of data. We merely use one scale (or one of of stems) for all the batches.
```

XVI.II.187 534

```

When are these concepts employed in the analysis of complex multivariable data sets? Since such data sets are a collection of batches, related in some complicated fashion, the tools of Unit 1 and 2 are ū̄ēful in "géetting a \(\bar{f} \bar{e} \bar{e} \overline{1}\) for the dātā". One should analyze the
 fitting the desired innear model.

These tools are aiso very helpful in evaluating how well the model fits the data. Since data \(=\) fit + residual, the single batch of residuals from the fit is extremely important. Residuals as a batch are occasionally assumed to be well-behayed, a powerfui assumption, not often justified. We postpone the discussion of residuals and well= behaved batches to the next section.

Section 2. Review of Unit 3, Univariatē Regreassion
Unit 3 discussed the analysis of ordered multiple batches, a collection of batches with an associated scā̄e. For example, a data set of the number of live births of women, classified by the age of the mother at time of birth is an ordered multiple batch. We have one batch for women under 15 years of age, one batch for women \(15-15\) years, one for 20-24 years, 25-29 yeārs, \(30=34\) yēars, , 35-39 yēars, \(40-44\) years; 45 and over: There are 8 batchēs, eāch with vāluē for total number of live births, one datum for each year from 1950 to 1967. Associated with each batch is the midpoint of the age intervā. These midpoints, \(\approx \overline{14}, \overline{1} \overline{7}, \overline{2} \overline{2}, \overline{2} \overline{7}, 32, \overline{37}, 4 \overline{2}, \cong 4 \overline{6}\), constitute the age scale for the multiple batch.

We showed how parāllel schematic plots are drawn for ordered multiplē batchēs. Each plot is centēred at the correct value on the scale for the batch, and the width of the plot is made equal to the

Parallel Schematic plat of Live Births by Age of Mother Exhibit 1

536
XVI. II. 189

QMPM
width of the interval on the scale associated with the batch. As can be seen from the live birth schematic plot, exhibit 1 , this display summarizes the relationship between the data and the scale values quite well.

To summarize further these ordered batches; we compute typical values for the values, conditional on the values being located in a specific batch: conditional typical values: The conditional typical value for a data value in batch \(i\) is defined to be the median of the batch. The conditional typicals for the live birth data are given in Exhibit 2: Note how the values rise and fail as age increases, símilar to the raw data: The conditional typicals are representative

\section*{Exhibit \(\overline{2}\)}

Live Births by Age of Mother
Conditional Typical Values, or "Fits" for Each Age Class
"XI Age Class
Under 15
15-19
20-24
25-<9
30-34
35-39
40-44
over 45

Typical Value of " Y ", Given " X "
6,700 births
560,000 births
\(\overline{1}, 31 \overline{0}, 00 \overline{0}\) births
1,065,000 births
680,000 births
330,000 births
85 ,000 births
5,000 births

\section*{537}
values for each batch; and reflect the relātionship bētween the rāw data and the values ālong the ordered scale. Thus, we have the decomposition of datá vālués into conditionāl typicāles + residuals. If the conditional typicāls provide à good fit to the data, residuals will be small; otherwisè, thēy will bē lārgè. Ex̄hibit 3 displays the residuals from the conditional typical valuē for the live birth data. The many far out points indicaté some lack of fit.

The analysis of (\(\mathrm{X}, \mathrm{Y}\)) paired obsērvātional dātā bēgins with a consideration of these ordered pairs as à collection of mini-batchēs. We use the \(X\) varlable to break up the \(X\) axis into sēverāl intervals, and then group together the \(Y\) values of the ordered pairs falling in each interval into a single mini-batch. This "chopping up" of the \(\bar{X}\) axis follows an examination of the scātterplot of the (\(\mathrm{X}, \mathrm{Y}\)) data. Exhibit 4 is such a scātērplot of pērcent of the population illiterate in 1930 in a state (\(X\)) and percent of the population ilititerate in 1960 (Y). There are 51 points, onē per state and the District of Columbia.

The scatterplot is used to breāk thē data into mini-batches; such that tile intervals on the \(X\) axis are bounded by integers approximately of equal width, and contain equal numbers of \(Y\) values. It may not be possible to achieve all three of these goals, but we must rely on our professional judgment when working with real data.

Once we have achieved the reorganization of an (\(\bar{X}, \bar{Y}\)) data set into batches, it can be analyzed as a collection of ordered batches. The important question is: How inear is the relationship between the

QMPM

Schematic plot and Number Summary af Residuals

Module II
\%IIliterate \(1960(1)\) plotted against \(\%\) Illiterate \(1930(x)\). Onepoint per state. Exhibit 4

\[
540
\]

\section*{QMPM}
conditional typicā vālues and the \(\bar{X}\) scale? To answer thís we piot the conditional typicals and the hinges of the mini-batches on a separate piot and connect them. If the relationship is ciosé tō iñear and if
 of the illiterācy data-then we are in good shape. if the plot lacks thésé quālitíes, thēn we might want to transform our (\(\bar{X}, \bar{Y}\)) dàa set.

With rēgārd̄s to transformation we have 2 goais: (i) increase linearity, and (2) equalize spread. The plot of the conditionai typicals and hinges is quite useful in assessing how far we must go to achieve these goals. Īf the lines connecting the medians, upper hinges, and lower hinges are not straight; then a transformation on the \(X\) variable to increase linearity is needed. if the ines connecting the sumary quantities are nō paraliel, ānd diverge ō converge as \(\bar{X}\) increases, then the mídspreads of the batches are not constant. To equalize these spreads we transform \(\bar{Y}\). How do we determine how far up or down the iad̄ē̄ \(\overline{\text { of }} \bar{f}\) powers to move wíth \(X\) and Y? Exhibit \(\overline{6}\) is useful in this determination. Identify the shape of the scatterplot as one of the 4 functional forms in this display, and transform accordinḡy. Finding the best transformation is an iterative process. Try several.

Once we have successfully transformed the (\(X, Y\)) data set; we are now ready to sumarize formally the relationship of \(Y\) to \(X\). We fit a Ine, either resistantly or by least squares; to the (X,Y) data set. We hypothesize
\[
\mathrm{Y}_{1}=\mathrm{a}+\mathrm{bx} \mathrm{x}_{\mathrm{i}} \quad \overline{5} \cdot 1
\]

\section*{Exhibit 5}

Illiteracy Data, Conditional Typica/s for Mini-Batchics Connected (solid Line) and Hinges Connected (Dashed Line).

512

Exhibit 6
How to Move in Re-expressing \(x\) or \(y\) Alone (the four different shapes)

UP: squares, cubes, etc.
DOWN: logarithms, reciprocals, etc.
\[
\text { XVI. II. } 196
\]
as the function relating \(\bar{Y}\) tō \(\bar{X}\). We cāll the model fitting process "regression", and state that "Y is regressed on \(X\) ". Since we have only one variable \(\bar{X}\) to bé regresséd upon, the regression is a "univariablé" or univariate regression. \(\bar{Y}\) is called the dependent variable, X the independent variable.

Resistant iñes are cāculated by breaking the data into thirdsor 3 equal sized mini-batches--and computing the median of the X's and the median of the Y's-the condtional typical value-within each third. Label these three summary points
\[
\begin{aligned}
& \left(X_{(1)}, Y_{(1)}\right)=\text { median of first third } \\
& \left(X_{(2)}, \bar{Y}_{(2)}\right)=\text { median of second third } \\
& \left(X_{(3)}, Y_{(3)}\right)=\text { median of third third. }
\end{aligned}
\]

We compute
\[
b=\frac{\left(Y_{(3)}-Y_{(1)}\right)}{\left(X_{(3)}-\frac{1}{3}\right)}
\]
and
\[
\bar{a}=\frac{\overline{1}}{3}\left[\left(Y_{(1)}-B(1)\right)+\left(x_{(0)}-b X_{(1)}\right)+\left(Y_{(3)}-Y_{(3)}\right)\right]
\]

The resistant ine már, nece er teps polish to remove all the tilt and level from the rasta, poltor, we fit a line t: the residuals from the previous and ane ise a and balcula-ed from the polishing to the a and \(\bar{b}\) fro the retous fit.

Least squares minimizé tine sum st the squared residuals. We seek the \(a\) and \(b\) that minimize

QMPM
\[
\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2} .
\]

Least squares provides a fit very similay to a resistant ine if the data are innear, the spread about the line is constant, and there are no outliers. If any of these conditions are violated, then the least squares line will not fit the data well, and the reststant ine is preferable. Resistant lines are "resistant" to violations of these assumptions.

We compute
\[
\mathrm{b}=\frac{\sum\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)\left(\mathrm{Y}_{i}-\overline{\mathrm{Y}}\right)}{\sum\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}}
\]
and
\[
a=\bar{Y}-b \bar{X}
\]
as least squares coefficients estimates. To evaluate how weil the least squares ine fits the data, we calculate
\[
s_{y i x}^{2}=\frac{\sum\left(\bar{Y}_{i}-\bar{a}-\bar{b} \bar{x}_{i}\right)^{2}}{n-2}
\]
and
\[
x^{2}=1-\frac{\sum\left(Y_{i}-\bar{a}-b X_{i}\right)^{2}}{\sum\left(Y_{i}-\bar{Y}\right)^{2}}
\]
\(S_{y}^{2} \mid x\) is the variance about the line and should be as small as possible. \(r^{2}\) is \(\overline{1}\) minus the ratio of residual variation to total variation, and is interpreted as the "percent of the total variation" explained by the line. The closer this quantity is to 1 the more completely the line "explains" the data.

Residuals are defined as
\[
r_{i}=\bar{Y}_{i}=a=\overline{b X_{i}}
\]
and are very important in evaluating the ieast squares and resistant fit. Residuals; treated as a single batch; should be well-behaved. A well-behaved batch is symmetric about the mean of the batch; approximately \(64 \%\) of the batch values are within one standard deviation of the mean, and approximately \(95 \%\) of the batch values are within 2 standard deviations of the mean. Such a batch has no outifers. This wellbehaved assumption is crucial to least squares lines and will bé discussed further in Untt 4 :

A plot of the residuals versus \(\bar{X}\) is also important Such a plot should bé a random swarm of points, devotd of any pattern. Any patiern, such às trigonometric, wedge, linear, or curvilinear, is an indícation that the line does not fit.

Tlme series data are a apecial kiñ of (X, \(\overline{\mathrm{Y}}\)) data: The X variab̄ié refers to time (months; weeks; days; étc.) and there is one \(\bar{i}\) associ-
 ít is usuaily necessary to smōth these data sets to filter out the

 time point and working down to the last. The data are smoothed several times until the smoothed values from the ith iteration are identical to those from the (i-i)th: Exhibit 7 is a time piot óf emergency registrations at \(\overline{\mathrm{D}}\). C. General Hospital, and exhibít 8 is the smoothed time plot. Note how many of the peaks and troughs have been remové by the smoothing.

QMPM

If the time plot shows sufficient trends, then we may extrapolate, estimate beyond the range of the data, and interpolate, estimate between two consecutive time points. The identification of periodicities mich is seasonal highs and lows is also important.

Section 3. Representation of a data set as a matrix.
Consider an (X,Y) data set. This data set contains 2 related batchés \(X\) and \(Y\) óqua size \(N\). The observations in \(X\) are denoted \(x_{i}\), and those in \(Y, \bar{y}_{i}\). in Eact,
\[
\begin{aligned}
& X=\left(x_{1} ; x_{2} ; \ldots, x_{N-1} ; \dot{x}_{N}\right) \\
& Y=\left(y_{1} ; \dot{y}_{2}, \ldots, \dot{y}_{N-1}, \dot{y}_{\mathbf{N}}\right)
\end{aligned}
\]
i.e.; the dat vector \(X\), of length \(N\), can be represented as an N -tuple of values \(x_{1}\) througi \(x_{N}\). Similariy for \(Y\). We have written \(X\) and \(Y\) horizontally; henceforth; we shall represent these vectors as vertical columns;
\[
\underset{\sim}{x}=\left(\begin{array}{c}
\bar{x}_{1} \\
\bar{x}_{2} \\
\cdot \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right)
\]
\[
\mathcal{X}=\left(\begin{array}{c}
y_{\overline{1}} \\
\dot{y}_{2} \\
\cdot \\
\cdot \\
\bar{y}_{\bar{n}}
\end{array}\right)
\]

We call \(X\) and \(Y\) column vectors and represent them with iftile letters underscored with "tildas": \(\underset{\sim}{x}\) and \(\underset{\sim}{y}\). All vectors will be written as little letters with tildas: \(a\), \(b\), etc. The length of a vector is
equal to the number of observations, \(N\). \(y\), in the inear model, is called the dependent variāble, or vector of dependent observations.

Unit 4 is concerned with data sets containing a data vector \(\bar{y}\) and more than one \(x\) vector. We relate the variable \(Y\) to variables \(\bar{X}_{1}, X_{2}, \ldots, X_{p}, i . e .\), we seek to "describe" \(Y\) as a function of \(p\) dependent variables \(X_{1}, X_{2}, \ldots, X_{p}\). We need a convenient mathematical representation of the variables \(\bar{X}_{1}, X_{2}, \ldots, \bar{X}_{p}\).

We present an example. For \(N=10\) eastern states; we have data on the transportation equipment industry in 1957.
\begin{tabular}{|c|c|c|c|}
\hline State & (uillon \$) Aḡgregãē Value Added & \begin{tabular}{l}
(million \$) \\
Aḡgregate Cápital \\
Servicé \({ }^{\text {Flow }}\)
\end{tabular} & ```
(million man-hours)
 Aggregate
 Man-Hours
 Worked
``` \\
\hline Connecticut & 690 & 39 & 124 \\
\hline Maine & 29 & 2 & 6 \\
\hline Maryland & 415 & 18 & 69 \\
\hline Massachusetts & 242 & 15 & 39 \\
\hline New Jersey & 667 & 33 & 83 \\
\hline New York & 940 & 73 & 190 \\
\hline Ohio & 1611 & 158 & 260 \\
\hline Pennsylvania & 618 & 34 & 98 \\
\hline Virginia & 174 & 7 & 31 \\
\hline West Virginia & 23 & 2 & 4 \\
\hline
\end{tabular}

Exhibit 14: Regression Dater

We seek to estimate Aggregate Value Added (Y); as a function of
Aggregate Capital Service Flow \(\left(X_{1}\right)\) and Aggregate Man-Hours Worked ( \(X_{2}\) ).
This functional relationship is known in economics as the Cobb-Douglas production function.

552

QMPM

The dependent variable, \(\underset{\sim}{y}\), is
\[
\underset{\sim}{y}=\left(\begin{array}{r}
690 \\
29 \\
415 \\
242 \\
667 \\
9640 \\
1611 \\
61 \\
178 \\
23
\end{array}\right)
\]

The 2 independent variables ( \(p=2\) ) are
\[
\sim_{\sim}=\left(\begin{array}{r}
39 \\
2 \\
18 \\
15 \\
33 \\
73 \\
158 \\
34 \\
7 \\
2
\end{array}\right) \quad{\underset{\sim}{2}}_{2}=\left(\begin{array}{r}
124 \\
6 \\
69 \\
39 \\
83 \\
190 \\
260 \\
98 \\
31 \\
4
\end{array}\right)
\]

The elements in \(x_{i}\) are deroted \(x_{i j}, i=1, \ldots, 10\), and the eiements in \(\bar{x}_{2}\) are denoted \(x_{12} 1=1 ; \ldots, 10\). Hence, \(x_{11}=39, \bar{x}_{21}=2, \ldots, \bar{x}_{10,1}\) \(=2, \bar{x}_{12}=124, \ldots ; \bar{x}_{10,2}=4\).

Suppose we place the vectors \(\bar{x}_{1}\) and \({\underset{\sim}{x}}_{2}\) side by side, and lā̄ē this "entity" X. We have:

We call \(\bar{x}\) a matrix (piurai: matrices). A matrix is mereiy a collection of \(\bar{p}\) vectors. It is symbilized by a capital letter underscored with à tíldā: \(\bar{A}\) matrix is a 2 dimensional quantity, characterized by first dimension \(=\) number of rows and second dimension \(=\) number of colums: Our data matrix \(\bar{x}\) has dimensions 10 and 2 , and is a (10 \(\times 2\) ) matrix. Note that a matrix with only one column is a vector. if \(\overline{\mathrm{N}}=\overline{\mathrm{p}}\); \(\underset{\sim}{\mathrm{X}}\) is cailed square; otherwise it is rectangular.

In generai, the data matrix \(\mathbb{X}\) of independent variables will have dimensions \(\mathbb{N}\) and \(p\). The elements of \(\underset{\sim}{X}\) are \(x_{i j}\) where \(i=\overline{1}, 2, \ldots, N\), and \(\bar{j}=1,2, \ldots, p\). In multiple regression, a column of \(\underset{\sim}{X}\) is a single variabie, \(x_{j}\), and a row of \(\underset{\sim}{x}\) is a single observation-a multivariabie observation. The observations in the data matrix formed from exhibit 14 refer to the 10 eastern states. on each observation (state) we record capital service flow ( \(\mathrm{X}_{1}\) ) and man-hours worked ( \(\mathrm{X}_{2}\) ). Remember that value added is not part of the \(\underset{\sim}{x}\) data matrix; it is the \(\underline{y}\) vector of dependent observations.

An ( \(\bar{N} \times \overline{\mathrm{p}}\) ) data matrix \(\underset{\sim}{\mathrm{X}}\) is:


This representation will be used throughout Unit 4.

QMPM

\section*{Section 4. Matrix manipulation}

In this section we define
(1) Matrix addition: \(\underset{\sim}{X}+\underset{\sim}{\mathcal{Y}}\)
(2) Null matrix: \(\underset{\sim}{Z}\)
(3) Matrix multiplication: X Y
(4) Matrix transposition: \(x^{t}\)
(5) Ídentity matrix: \(\quad \underset{\sim}{\sim}\)
(6) Matrix inversion: \(\mathrm{X}^{-1}\)

Matrix addítion is a simple operation: To add 2 matrices \(\underline{X}\) and \(\underline{\underline{Y}}\), they must be ōf the same dimensions; ( \(\bar{N} \bar{p}\) ). Let \(\bar{C}=\bar{X}+\bar{Y}\). If \(\bar{X}\) has elements \(\bar{x}_{i j}\) and \(\bar{Y}\) has elements \(y_{i j}\), then the \((i, j)\) element of \(\bar{C}, c_{i j}\), equals \(x_{\bar{i} j}+\bar{y}_{i j}\). We merely àd the corresponding entries of \(\underline{X}\) and \(\underline{Y}\). An example iliustrates this: if
\[
X=\left(\begin{array}{lll}
3 & 2 & 0 \\
9 & 1 & 6
\end{array}\right) \quad \text { and } \quad \underset{\sim}{\sim}=\left(\begin{array}{rrr}
14 & 17 & 1 \\
2 & 0 & 9
\end{array}\right)
\]
then
\[
\mathcal{C}=\left(\begin{array}{lll}
3 \mp 14 & 2 \mp 17 & 0 \mp \overline{1} \\
9 \mp & 2 & 1+0
\end{array} \quad 6 \mp 9\right) \quad=\left(\begin{array}{rrr}
17 & 19 & 1 \\
11 & 1 & 15
\end{array}\right)
\]
 i.e. it is addition of \(X\) to the negative of \(\underset{\sim}{X}\).

The null matrix \(\underset{\sim}{2}\) plays a special role in addition. It is an (N \(\times \overline{\mathrm{p}}\) ) matrix of zeros: \(\bar{z}_{1 \bar{j}}=\overline{0}\) for ali \(i\) and \(\bar{j}\). If \(\bar{X}\) and \(\bar{z}\) are ( \(N \times p\) ) matrices, and \(\underset{\sim}{Z}\) is the null matrix, then
\[
\underset{\sim}{x}+\underset{\sim}{\underline{z}}=\underset{\sim}{x}-\underset{\sim}{z}=\underline{x} . \quad 555
\]

Matrix multiplication is slightly more complicated than matrix addition. It is not a term by term operation of multiplying corresponding entries! This is important to remember. In order to multiply matrices \(\underset{\sim}{X}\) and \(\underset{\sim}{Y}\) we require that the number of columns of \(\underset{\sim}{X}\) must equal the number of rows of \(\underset{\sim}{Y}\).

If \(\underset{\sim}{X}\) has dimension ( \(N x p\) ) and \(\underset{\sim}{Y}\) has dimension ( \(p\) \(q\) ); then the product \(\underset{\sim}{X Y}\) is an ( \(N X q\) ) matrix, \(\underset{\sim}{C}\), whose entries; \(c_{i j}\), are obtained by suming the products formed by multiplying, in order, each entry in the ith row of \(\underset{\sim}{X}\) with each corresponding entry in the \(j\) th colum of \(Y\). Formally,
\[
c_{i j}=\sum_{k=1}^{\stackrel{\rightharpoonup}{p}} x_{i k} y_{k j}
\]

Matrix muitiplication is defined as muitiplying the rows of the matrix On the left with the colums of the matrix on the right. In general, X \(\underset{\sim}{Y}\) does not equal \(\underset{\sim}{X} \underset{\sim}{X}\) : matrix multiplication is not comutative.
'An example helps Let
\[
\underset{\sim}{X}=\left(\begin{array}{lll}
2 & 1 & -6 \\
1 & -3 & 2
\end{array}\right) \quad \text { and } \quad \underset{\sim}{\sim}=\left(\begin{array}{rrrr}
1 & 0 & -3 & 0 \\
0 & 4 & 2 & 0 \\
-2 & 1 & 1 & 1
\end{array}\right)
\]
 the operation \(C=X Y\) is defined. \(C\) will have dimension (2 \(x\) ) : The first element of \(\underset{\sim}{C}, c_{11}\), is formed by the suming the products of the first row of \(\underset{\sim}{X}\) with the first column of \(Y: c_{11}=2 \cdot 1+1 \cdot 0+(-6)(-2)\) \(=\) 14. \(\bar{c}_{12}\) is formed with the first row of \(X\) and the second column of Y: \(\quad \bar{c}_{12}=2 \cdot 0+1 \cdot 4+(-6) \cdot 1=-2\). The matrix C is

QP
\[
\begin{aligned}
\underset{\sim}{C} & =\left(\begin{array}{cccc}
(2 \cdot 1+1 \cdot 0+6 \cdot 2 & 2 \cdot 0+1 \cdot 4-6 \cdot 1 & -2 \cdot 3+1 \cdot 2-6 \cdot 1 & 2 \cdot 0+1 \cdot 0-6 \cdot 1 \\
1 \cdot 1-3 \cdot 0-2 \cdot 2 & 1 \cdot 0-3 \cdot 4+2 \cdot 1 & -1 \cdot 3-3 \cdot 2+2 \cdot 1 & 1 \cdot 0-3 \cdot 0+2 \cdot 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
14 & -2 & -14 & -6 \\
-3 & -10 & -7 & 2
\end{array}\right)
\end{aligned}
\]

A square matrix \(X\) has equal numbers of rows and columns. It has dimension ( \(\mathrm{N} \times \mathrm{N}\) ). A square matrix is symmetric if
\[
x_{i j}=x_{j i} \text { for all } i \text { and } j
\]

For example, the matrix
\[
\underline{\mathrm{X}}=\left(\begin{array}{rrrr}
9 & 6 & -3 & 14 \\
6 & 3 & 0 & 2 \\
-3 & 0 & 2 & 4 \\
14 & 2 & 4 & 1
\end{array}\right)
\]
iss symmetric: With a square matrix, wee cali the terms \(\bar{x}_{i 1}\), \(\bar{i} \overline{=} 1, \ldots\), \(\bar{N}\); the diagonal of the matrix. The diagonal of the above matrix is \((9,3,2,1)\). Note that the diagonal is not well-definéd in àectanguiar matrix.

The transposition, or transpose, of a matrix, \(\underline{x}^{t}\), iss defined as a

\[
y_{i j}=x_{j \pm}
\]

If \(\underset{\sim}{X}\) is a ( \(N \times p\) ) matrix; then \(\underset{\sim}{Y}\) is ( \(p \times N\) ). Consider the matrix \(C\) given above.
\[
{\underset{\sim}{c}}^{\mathrm{c}}=\left(\begin{array}{cc}
14 & -3 \\
-2 & -10 \\
-14 & -7 \\
-6 & 2
\end{array}\right) \quad \begin{aligned}
& 557
\end{aligned}
\]

If \(X\) is a square symmetric matrix, \(X=X_{\sim}^{t}\); i.e., transposition does not change the matrix.
 multiplication of the transpose of an ( \(\overline{\mathrm{x}} \overline{\mathrm{p}}\) ) data matrix \(\bar{\sim}\) with the data matrix. \(\mathbb{X}^{\boldsymbol{X}} \underset{\sim}{X}\) is \(\bar{a}\) square matrix of dimension ( \(\overline{\mathrm{P}} \overline{\mathrm{p}}\) ). Let \(\overline{\mathcal{X}}=\underset{\sim}{\mathbb{X}}\), and \(\underset{\sim}{C}={\underset{\sim}{X}}^{\bar{t}} \underset{\sim}{X} \underset{\sim}{X} \underset{\sim}{X} . \underset{\sim}{C}\) has elements
\[
\begin{aligned}
c_{i j} & =\sum_{k} \ddot{y}_{i k} x_{k j} \\
& =\sum_{k} x_{k i} x_{k j}
\end{aligned}
\]
since \(\bar{y}_{i k}=\bar{r}_{k i}\). The diagonal elements of \(\underset{\sim}{C}, c_{i \bar{i}}\), are the sums of the squares of the colums of \(X\) :
\[
\bar{c}_{i i}=\sum_{k} x_{k i}^{2}
\]

The offediagonal éements, élements with \(i \neq j\); àre the sums of the ith - coolum of \(\underset{\sim}{x}\) multipiféd by the jth column of \(\underset{\sim}{X}\) and are calied "crossproducts". Note tinat \(\underset{\sim}{c}\) is symmetrić
\[
c_{j i}=\sum_{k} y_{j k} \cdot x_{k i}=\sum_{k} x_{k j} \cdot x_{k i}=\sum_{k} x_{k i} \cdot x_{k j}=c_{i j}
\]

The matrix \(\mathrm{X}^{t} \overline{\mathrm{X}}\) is called the matrix of sums of equares and cross products.

Just \(\bar{a} \bar{s}\) multiplication has a unique identity element, \(\overline{1}\), matrix muitiplication has an iaentity matrix \(\overline{\underline{I}}\) : \(\underset{\sim}{\bar{I}}\) is a square (pxp) matrix, with ones on the diagonal, and zeros elsewhere:

QMPM

Multiplication of an ( \(\times\) p) matrix \(X\) by \(\underset{\sim}{I}\) yields \(\underset{\sim}{X}\) :
\[
\underset{\sim}{X} \underset{\sim}{I}=\underline{X}=\underset{\sim}{X} .
\]

Divisio: of matrices is quite complicated. The process is known Critx inversion and is defined only for square matrices. If \(\mathbb{Y}\) is a ( \(\sin\) ) matrix, the inverse of \(\underset{\sim}{\mathbf{Y}}\) is denoted \(\mathrm{Y}^{-1}\), such that
\[
\underline{Y} \underline{Y}^{-1}=\underline{Y}^{-1} \underline{Y}=\underline{I}
\]

Inverting a large matrix cannot be done without the aid of a computer. For small matrices; we have the following result:

If \(\bar{X}\) is a ( \(2 \times 2\) ) matrix, then
\[
\underset{\sim}{y}=\left(\begin{array}{ll}
y_{22} /\left(y_{11} y_{22}-y_{12} y_{21}\right) & -y_{12} /\left(y_{11} y_{22}-y_{12} \bar{y}_{21}\right) \\
-y_{21} /\left(y_{11} y_{22}-y_{12} y_{21}\right) & y_{11} /\left(y_{11} y_{22}-y_{12} y_{21}\right)
\end{array}\right)
\]

Determining the inverse of the matrix \(\underline{\bar{x}}^{t} \bar{x},\left(\underline{X}^{t} \underline{\underline{X}}\right)^{-1}\), is the "key computation" in muitiple regression.

\section*{References:}

\section*{Section 3.}

Snedecor, G. W. and Cochran, W. G. Statistical Methods, Sixth Edítion, fowa Śtate Uníversity Press, Ames, Iowa, 1967, Chapters 6 and 13.

Section 4 .
Green, P. E. and Carroil, J. D. Mathematical Tools for Applied Multivariate Analysis, Academic Press, New York, 1967, Chapter 2.

Haeussier, E. and Paui, R. Introductory Mathematical Analysis: For Students of Business and Economice, Second Edítion, Reston Publishsing Co., Reston, Va., 1967, Chaptē 14.

Nering, E. D. Linear Algébra and Matrix Theory, Second Edition, John Wiley \& Sons, New York, 1970.
\[
560
\]

Homew, \(k\)
Prèréquisite Inventory, Unit 4
net :
\[
\underset{\sim}{A}=\left(\begin{array}{lll}
1 & 6 & 9 \\
3 & 2 & 1 \\
4 & 7 & 0 \\
0 & 1 & 3
\end{array}\right) \underset{\sim}{B}=\left(\begin{array}{lll}
1 & 7 & 2 \\
9 & 1 & 1 \\
8 & 5 & 2 \\
7 & 4 & 3
\end{array}\right) \quad \underline{c}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 2 \\
3 & 2 & 1
\end{array}\right) \underset{\sim}{D}=\left(\begin{array}{ll}
9 & 3 \\
1 & 6
\end{array}\right)
\]

Stāte whethér the following operations are valid, and if so, compute the resulting matrix.
(1) \(A+D\)
(6) \(\bar{C}^{-1} \underset{\substack{c}}{ }\)
(2) A C
(7) \({\underset{\sim}{D}}^{-1}\)
(3) \(A^{t}\)
(8) \(\underset{\sim}{B}=\overline{1}\)
(4) \(\underline{c}^{t} \underline{C}\)
(9) \(A^{+}\)b
(5) \(\underset{\sim}{A}+\underset{\sim}{B}\)
(10) A+ I
(1i) If \(Z\) is a ( \(5 \times 5\) ) null matrix, what is \(Z \mathbb{Z}\) ?
(12) What is the diagonal of the matrix \(\underset{\sim}{C}\) given above?
(13) Are the off diagonal terms of the matrix \(\overline{\mathrm{B}}+{\underset{\mathrm{B}}{ }}_{\mathrm{t}}\) well defined?
(14) Are any of the above matrices symmetric?
(15) Prove; that for any square matrix \(F, F+{\underset{F}{t}}^{\text {t }}\) is symetric.
(16) Compute: A A.
\[
561
\]

\section*{Homework Solutions \\ Prerequisite Inventory, Unit 4}
1. Invalid operation, must have equal dimensions.

2: \(\left(\begin{array}{lll}1 & 6 & 9 \\ 3 & 2 & 1 \\ 4 & 7 & 0 \\ 0 & 1 & 3\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 1\end{array}\right)=\left(\begin{array}{ccc}40 & 26 & 24 \\ 10 & 10 & 14 \\ 18 & 15 & 26 \\ 11 & 7 & 5\end{array}\right)\)
3. \(\left(\begin{array}{llll}1 & 3 & 4 & 0 \\ 6 & 2 & 7 & 1 \\ 9 & 1 & 0 & 3\end{array}\right)\)
4. \(\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 1\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 1\end{array}\right) \quad=\left(\begin{array}{ccc}14 & 10 & 10 \\ 10 & 9 & 10 \\ 10 & 10 & 14\end{array}\right)\)
\(5 \cdot\left(\begin{array}{rrr}2 & 13 & 11 \\ 12 & 3 & 15 \\ 12 & 12 & 2 \\ 7 & 5 & 6\end{array}\right)\)

6: \(\left(\begin{array}{lll}\overline{1} & \overline{0} & \overline{0} \\ \overline{0} & \underline{1} & 0 \\ 0 & 0 & 1\end{array}\right)\)
\(\overline{7}\left(\begin{array}{cc}\frac{6}{9.6-3} & -\frac{3}{9 \cdot 6-3.1} \\ -\frac{1}{9.6-3 \cdot 1} & \frac{9}{9 \cdot 6-3.1}\end{array}\right)=\left(\begin{array}{cc}\frac{6}{51} & -\frac{3}{51} \\ -\frac{1}{51} & \frac{9}{51}\end{array}\right)=\left(\begin{array}{cc}\frac{2}{17} & -\frac{1}{17} \\ -\frac{1}{51} & \frac{3}{17}\end{array}\right)\)
8. Invalid operation; mist be à square matrix.
9. \(\left(\begin{array}{llll}1 & 3 & 4 & 0 \\ 6 & 2 & 7 & 1 \\ 9 & 1 & 0 & 3\end{array}\right)\left(\begin{array}{ccc}1 & \overline{7} & 2 \\ 9 & 1 & 14 \\ \frac{8}{7} & \frac{5}{4} & \frac{2}{3}\end{array}\right)=\left(\begin{array}{lll}60 & 30 & \overline{52} \\ 87 & 83 & 57 \\ 39 & 76 & 41\end{array}\right)\)
10. Invalid operation, the identity matix; \(I\), is a square matrix.
ii. \(\left(\begin{array}{lllll}0 & \overline{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)\)
(that is; 2)

12: \(\bar{x}_{11} \overline{=} 1\)
\(x_{22}=1\)
\(\bar{x}_{3 \overline{3}}=1\)
13. No, because only in a square matrix is the diagonā weli dḗned.
14. Yēs; \(\underset{\sim}{\text { e }}\)
15.
 \((\bar{j}, \dot{1})\) el ement of \(a_{j i} \mp a_{i j}\).
16. \(\left(\begin{array}{lll}26 & 40 & 12 \\ 40 & 90 & 59 \\ 12 & 59 & 91\end{array}\right) \quad 5 \because 3\)
```

Lecture 4-0 Introduction to Unit 4

```

\section*{Introduction to Unit 4 ; Miultiple Regrēsion}

\section*{Lecture Content:}
1. Introduction to objectives, probiem, and notation of unit 4
2. Introduction to the geometric representation of multiple regression

\section*{Main Topice:}
1. Specific introduction to objectミves of Unit 4
2. Notation or Unit 4
3. Introduction to general problen of Unit 4

Topic 1. Specific Introduction to Objectives of Unit 4:
I. Questions to be enswered in Unit 4
1. What isan \(\left(x_{i j} ; \bar{y}_{\overline{1}}\right)\) observational batch?
a. Data set consistilig of p+l batohes each containing N observations
b. Data set containing \(p\) independent or \(x\) variables and 1 dependent or y variable
c. The ith observation of the \(\bar{y}\) batch, \(\bar{y}_{\bar{f}}\), is as̄sociatéd with the ith observation of each of the \(\bar{p} \bar{x}\) bātchēs
d. We havé, thuss; a batch of \(N\) āssociated observations on p+l variables
2. What analyses cān be done on à batch of 1 y and multiple \(x\) variable data?
a. What kind of sumary can we use to describé the data?
ans: Fxpress conditional typical y as linear function of x's.
b. How do wē entimaté fit.
āns: Use lēāt s̄quāre: in multiple regression
c. How do we determine whêther transformations would improve the sumary?
años: Examine individual \(\bar{x} ; \bar{y}\) batchés
d. How do we adjust sumarization to hāndle special sitwhtions in \(x^{\prime} s\) ?
ans: Indicator (dumy variables); splines; interactions; quadratic terms
e. How do we judge whether the sumary sumarizes the data effectively?
ans: Inference on least squares
f. How do we judge whethē the individual x variables are réated to the y variable in important ways?
ans: (t statistic) Inférence on coefficients
\[
56,5
\]
8. How can we determine whether our evaluation of the

 ans: Study residuals :90sqa \(I+q\) ar jnioq \(\overline{\text { a }}\)
h. How can we detemine whether the fyting procedure itself yels appropidate for the datia?


 .\(S\)





\(\therefore \operatorname{Sne} x\)

 (.eqotogy ajoriè








Topic 2. Notation
1. The ith observations on each or the \(p+1\) variables are (2) associated. Thus wè can represent them as an arrangement and a point in \(p+1\) space:
\[
\left(x_{11}, \bar{x}_{12}, \ldots \ldots \bar{x}_{1 j}, \ldots \ldots x_{i p}, y_{i}\right)
\]

We adopt the convention that the first subscript indicates the observation, the second indicates the variable
2. Piling these arrangements on top of another and separating the independent from the dependent variable yields an Nxp matrix of \(x\) values and a column vector, pxl, of \(y\) values

3. In matrix notation this can be written
\[
\underset{\sim}{x} \text { and } \underset{\sim}{y}
\]
where \(\underset{\sim}{X}\) is Nxp and \({ }^{2}\) is pxi
(Recall that upper case letters denote matricés and lower case denote vectors.)
(Note also that \(\underset{\sim}{x}\) may contain a column of \(1 s\) for least squares.)
4. We wili be studying equations with multiple \(x\) 's. Use \(b_{k}\) aotation for coefficients.

Thus; \(y=a+b x, \quad y=b_{0} \mp b_{i} x\)
and genērālly,
\[
y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\ldots \ldots b_{p} x_{p}
\]

We refer to the \(b_{k}\) as coefficients or parameters; \(b_{0}\) is the 'tonstant" term. The equations are inear in the coefficients.
Eni

Topic 3. Introduction to general problem of Unit 4
1. What are some examples of one \(Y\) and multiple \(X\) data?

Y Is cost in dowiars (continuous)
\(X_{i}\) is speed in mph (continuous)
\(x_{n}\) is weight in pounds (continuous)
\(X_{3}\) is age in years (conti: 'ious)
Q: What is typical cost of an accídent given speed, weight, age?

What are the marginal éffects ōf speed; weigh̄t añ age un the typical cost?
b. IQ scores and average pupil
ot pupil; number of siblins.
Y Is IQ score
\(\mathrm{X}_{1}\) is outlay in dollars (continuous)
\(\mathrm{X}_{2}\) is age in years (continuous)
\(\mathrm{X}_{3}\) is sibiing count (discrete)
\(X_{4}\) is birth order

\(\bar{X}_{\overline{5}} \quad \bar{i} \bar{s} \bar{s} \overline{e x}(0 / 1)\)
(indicator)

Q: What is typical iQ score given: outiay, age, sibilngs, ōrder, sex?

What are their marginal éféects?
Āre àli important?
c. Median years of education in a pittsburgh census tract and population density, median age, percent poor, percent nonwhite.

Y is éducation
\(\bar{X}_{1}\) is population density
\(\mathrm{X}_{2}\) is age

QMPM
\[
\begin{aligned}
& \bar{X}_{3} \text { is povert! } \\
& \bar{X}_{4} \text { is nonwtite } \\
& \left(X_{5}^{-} \text {is poverty } \bar{x}\right. \text { nonwite) interaction }
\end{aligned}
\]
2. How do we construct the summary?
\[
\begin{aligned}
\text { Data } & =\text { Fit }+ \text { Residuā } \\
& =\text { Conditional Typical } \mp \text { Residual } \\
& =C\left(y \mid X_{1} \bar{x}_{2} \ldots \bar{X}_{p}\right)+\text { Residual }
\end{aligned}
\]

We assume:
\[
c\left(y \mid x_{1} \bar{x}_{2} \cdots \bar{x}_{p}\right)=b_{0}+b_{1} x_{1}+\bar{b}_{2} \bar{x}_{2}+\ldots+b_{p} x_{p}
\]
and for the fth observation:
\(\bar{c}\left(y_{i} \mid x_{i 1} x_{12} \ldots x_{i p}\right)=\hat{y}_{i}=b_{0}+\bar{b}_{1} \bar{x}_{i 1}+b_{2} \bar{x}_{i 2}+\ldots+\bar{b}_{p} X_{p}\) thus:
\[
\bar{y}_{i}=\hat{y}_{i}+\bar{R}_{i}
\]

Note: the equation is linear since exponents of the bs are ail 1. The \(X \bar{s}\) may have any exponents. Just read \(X^{k}\) as \(Z\).
3. An example: Nations data
a. Representation
\(\overline{\mathbf{Y}}=\) iife expectancy
\(x_{1}=\) per capita income
\(\ddot{x}_{2}=\) infant mortality
\[
569
\]

We haye for each nation ( 9.9 observations)
\[
\begin{aligned}
& \dot{y}_{1}=\bar{E}_{0} \mp \bar{b}_{1} \bar{X}_{11}+\bar{b}_{2} \bar{x}_{12} \\
& \text { Pile on top of one another } \\
& \bar{y}_{1}=\bar{b}_{0}(1)+\bar{b}_{1} \bar{x}_{11}+\bar{b}_{2} \bar{x}_{12} \\
& y_{2}=b_{0}(1)+\bar{b}_{1} x_{21}+\bar{b}_{2} X_{22} \\
& \begin{array}{cccc}
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
\vdots & \\
\dot{y}_{99} & =b_{0}(1)+\bar{b}_{1} \bar{x}_{99} & 1+\bar{E}_{2} \bar{x}_{99} &
\end{array} \\
& \text { or in matrix notation } \\
& \hat{y}=\underset{\sim}{x} \\
& \left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
\vdots \\
y_{99}
\end{array}\right)=\left(\begin{array}{cccc}
1 & x_{11} & x_{12} \\
1 & x_{21} & x_{22} & \\
\vdots & & & \\
\vdots & & & \cdot \\
1 & x_{99} & & x_{99}
\end{array}\right) \cdot\left(\begin{array}{c}
b_{-} \\
b_{-} \\
b_{2} \\
b_{2}
\end{array}\right)
\end{aligned}
\]
b. Visualizatton
\[
\begin{equation*}
\text { Equation } \hat{y}=b_{0}+b_{1} y+b_{2} \bar{x}_{2} \text { is plane in 3-space } \tag{3}
\end{equation*}
\]
\(\bar{c}\). What does sumary invojve geometricaliy?
\[
\begin{aligned}
& \text { 1. Simplified case: X veriablea High or Low } \\
& \text { Uchematize } \\
& \text { Display in 3-space } \\
& \text { Fit surmary-Connect medians? } \\
& \text { Fit plane? }
\end{aligned}
\]

\section*{i.i. General situation: continuous data point cloud (plotting) considsi solid fit plane \\ \[
\begin{align*}
& \text { equation }  \tag{8}\\
& \text { reaiduals } \\
& f=b_{0} \\
& y
\end{align*} b_{1} x_{1}+b_{2} x_{2}
\] \\ Interpretation}
d. How d? we chrese the plane:
e. Thet Lbout more X's?
f. Trgasfor nations?

Lecture 4-0
Transparency Presentation Guis:


57

Questions for Unit 4:
i. What is an ( \(X_{i j}, Y_{i}\) ) obisisvational batch?
2. What analyses can be done on such batches?
3. How do we interpret and evaluate these analyses?

Data Representation:
Associated observations on de independent variables and one dependent variable:
\[
\left(X_{i,}, X_{i 2}, \ldots X_{i j}, \ldots . X_{i p}, Y_{i}\right)
\]

Datamatrix of \(N\) observations on \(\bar{p}\) independent variables and vector of \(N\) observations on one dependent variable:

P variables

Matrix Representations:
\[
x \text { and } y
\]

Li near Equation:
\[
y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\ldots \ldots+b_{p} x_{p}
\]

GMPM
[3]


573
4-0

Module í
[4]

\[
574
\]
\[
4-0
\]

QUPM
[s]

\(\mathcal{L}\)

575


\section*{QMPM}
\[
[7]
\]


577
\(\angle 1=\bar{D}\)
XVI.II. 228


578
4-0

\section*{GMPM}

\section*{[9]}


> Piave has equation \(c\left(y \mid x_{1} x_{2}\right)=b_{0}+b_{1} x_{1}+b_{2} x_{2}\)
\[
\begin{aligned}
& \text { Residuals } \\
& r_{i}=y_{i}-c\left(y_{i} \mid x_{i 1} x_{i 2}\right) \\
& r_{i}=x_{k}-c\left(y_{1} \mid x_{k_{i}} x_{2}\right)
\end{aligned}
\]

1

\section*{Lecture 4-1. Multiplé Regression Using Least Squares}

Multiple Regression using least Squares: Aigebraic Computations

\section*{Lecture Content:}
1. The Model
2. Least Squares Estimation

\section*{Manapics:}
1. Aigebraic Representation of the Model
2. Matrix Version
3. Least Squares Solution-General
4. Least Squares Solution-Univariate
5. Examples of Computer Generated Fits
(There are no transparencies for this lecture. Material should bé developed on biackboard.)

\section*{Topic 1. The Model}
i. Basic issue--Presentation of Model

1: General case: N observations, p variables
2: Eth Equation
\[
\begin{aligned}
\hat{y}_{i} & =c\left(y_{i} \mid x_{i 1} ; x_{i 2} ; \ldots, x_{i p}\right) \\
& =b_{0}+b_{i} x_{i 1}+\ldots+b_{p} x_{i p}
\end{aligned}
\]
3. Note that this equation is in near in \(b_{i}\)
4. Matrix notation
\[
\left.\hat{\bar{\sigma}}_{1 i}\right)=\left(\begin{array}{lll}
1 & x_{i 1} & \ldots \\
x_{i p}
\end{array}\right)\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{p}
\end{array}\right)
\]
\(\overline{\text { or }} \quad \bar{y}_{1}={\underset{z}{i}}^{\mathbf{y}}\)
5. We can "stack" the \(\hat{\mathrm{y}}_{1}\) into a vector and the \(\bar{X}_{\mathrm{i}}\) into a matrix. Remember, 1 there are \(\mathbb{N}\) rows.
\[
\begin{aligned}
& \overline{\mathrm{or}} \underset{\mathrm{y}}{\mathrm{y}} \underset{\mathrm{X}}{\mathbf{b}}
\end{aligned}
\]
II. Probiem-This is only a conceptual model
1. it defines ac surface in pal dimensions
2. General equation for surface:
\[
\begin{aligned}
& \bar{C}\left(y \mid \bar{X}_{1}, \bar{X}_{2}, \ldots, X_{p}\right)=b_{0}+b_{1} \bar{x}_{1}+\ldots+\bar{b}_{p} \bar{X}_{p} \\
& \text { XVIII. } 232 \\
& 581
\end{aligned}
\]
3. The actual data points ( \(\left(y_{i}^{\prime \prime}\right)\) do not lie exactly on it
4. How do we choose the b's such that the surface is a reasonable summary of the point cloud
5. We of \(\bar{y}_{\bar{i}}\) given \(\mathbf{X}_{\bar{i}}\).

\section*{QMPM}

\section*{Topic 2. Least Squares Estimation}
I. Babic issuē-Mininize sum of squared résiduals
1. Choose bi so that
\[
\Sigma\left(\bar{y}_{i}=\overline{\hat{y}}_{i}\right)^{2} \text { is minimized }
\]
2. Solution:
\[
\underline{b}=\left(x^{\prime} \underline{x}\right)^{-1} x^{\prime} \underline{y}
\]
3. \(\overline{\mathrm{x}} \mathbf{X}\) must be "non-singular"
4. \(\underset{\sim}{\mathrm{Y}} \mathrm{Xb}\)

If. Solution-Least squares calculations
1. \(\left(\underline{x}^{-} X\right)=\)


Symetric matrix. Sums of squares and cross-products
2. \(X^{\prime} \mathbb{Z}=\)
\[
\left(\begin{array}{c}
\bar{\Sigma} Y_{i} \\
\overline{\Sigma X_{i 1} Y_{i}} \\
\Sigma X_{12} Y_{1} \\
\vdots \\
\Sigma X_{1 p} \dot{Y}_{i}
\end{array}\right)
\]
3. These calculations are straightforward computationally
4. Difficult task is inverting ( \(X\) )
III. Method-Univariate Situation (pei)
1. \(y=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ \dot{y}_{\bar{N}}\end{array}\right)\)
\[
x=\left(\begin{array}{cc}
1 & \bar{x}_{1} \\
1 & \bar{x}_{2} \\
\vdots & \cdot \\
\vdots & \cdot \\
i & \bar{x}_{\bar{N}}
\end{array}\right)
\]
\[
\left(\begin{array}{l}
b_{-} \\
0 \\
b_{-} \\
1
\end{array}\right)
\]
2. \(c(y \mid x)=\underset{\sim}{y}=\underline{x_{b}}=\left(\begin{array}{c}b_{-}+b_{1} \bar{x}_{1} \\ b_{0}+b_{1} \bar{x}_{2} \\ \cdot \\ \vdots \\ b_{0}^{-}+b_{\overline{1}} x_{N}\end{array}\right)\)
3. To determine \(\underline{b}\) and hence calculate \(\underset{\sim}{y}\), we must compute
\[
\overline{\mathrm{b}}=(\underline{\mathrm{X}} \underline{\mathrm{X}})^{-1} \underline{\mathrm{x}} \underline{y}
\]
4. Calculation
a. First evaluate
\[
\begin{aligned}
& (\underset{\sim}{\mathrm{x}} \underset{\sim}{\mathrm{x}})=\left(\begin{array}{llll}
\frac{1}{1} & 1 & \cdots & \frac{1}{x_{1}} \\
\mathrm{x}_{1} & x_{2} & \cdots & \mathrm{X}_{\mathrm{N}}
\end{array}\right) \\
& \left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\cdot & \cdot \\
\cdot & \cdot \\
1 & \cdot \\
1 & x_{N}
\end{array}\right) \\
& =\left(\begin{array}{cc}
N & \Sigma X_{i} \\
\Sigma X_{i} & \Sigma X_{i}^{2}
\end{array}\right)
\end{aligned}
\]

\section*{554}
b. Secondly, evaluate
\[
\begin{aligned}
\left({\underset{\sim}{x}}^{\prime} \dot{x}\right) & =\left(\begin{array}{cccc}
1 & \overline{1} & \cdots & \overline{1} \\
x_{i} & x_{2} & \cdots & x_{N}
\end{array}\right) \quad\left(\begin{array}{c}
\bar{y}_{1} \\
\ddot{y}_{2} \\
\vdots \\
\vdots \\
\dot{x_{N}}
\end{array}\right) \\
& =\binom{\Sigma_{y_{i}}}{\Sigma_{y_{i} x_{i}}}
\end{aligned}
\]
c. Thirdly, we must compute \(\left(X^{\prime} \bar{x}\right)^{-1}\)
i. If \(\underset{\sim}{M}=\binom{\mathrm{ab}}{\mathrm{c} \bar{d}}\); then
\[
{\underset{M}{M}}^{-1}=\left(\begin{array}{cc}
d / a d-b c & -b / a d-b c \\
-c / a d-b c & a / a d-b c
\end{array}\right)
\]
ii. But \({\underset{\sim}{x}}^{\prime} \underset{\sim}{X}\) is symmetric, and \(\bar{b}=c\)
iii. Hence \({\underset{\sim}{M}}^{-1}=\frac{1}{a d-b^{2}}\left(\begin{array}{cc}d & -b \\ -b & a\end{array}\right)\)
iv. Note: \(\overline{\mathrm{I}} \mathrm{a} \overline{\mathrm{a}} \overline{\mathrm{d}} \mathrm{b}^{2} \approx \overline{0}, \mathbb{M}^{-1}\) cannot be computed
v. This occurs when the X 's are nearly constant
vi. We have
\[
\begin{aligned}
\bar{a} & =N \\
b & =\bar{\Sigma} x_{i} \\
\dot{d} & =\bar{\Sigma} x_{\bar{i}}^{2} \\
\overline{a d}-b^{2} & =N \Sigma x_{i}^{2}=\left(\Sigma x_{i}\right)^{2} \\
& =N \Sigma\left(X_{i} \overline{\bar{X}}\right)^{2}
\end{aligned}
\]
vii. Hence
\[
\begin{gathered}
\left(\underline{x}^{\prime} \bar{x}\right)^{-1}=\frac{1}{\mathrm{~N} \Sigma\left(x_{i}-\bar{x}\right)^{2}}\binom{\Sigma x_{1}^{2}=\Sigma x_{i}}{-\Sigma x_{i}} \\
555
\end{gathered}
\]
d. Lastly,
\[
\begin{aligned}
& b=\frac{1}{N \Sigma\left(\bar{x}_{i}-\bar{x}\right)^{2}}\left(\begin{array}{c}
\Sigma \bar{x}_{i}^{2}-\Sigma \bar{x}_{i} \\
-\Sigma \bar{x}_{i} \\
\bar{N}
\end{array}\right)\binom{\Sigma y_{i}}{\Sigma x_{i \bar{i}}} \\
& =\frac{1}{N \cdot \Sigma\left(\bar{x}_{i}-\bar{x}\right)^{2}}\binom{\bar{\Sigma} x_{i}^{2} \bar{\Sigma}_{y_{i}}-\bar{\Sigma} x_{i} y_{i} \bar{\Sigma} x_{i}}{\bar{N} x_{i y} y_{i}-\Sigma x_{i} \overline{\Sigma y}_{i}}
\end{aligned}
\]
e. Thus,
\[
\begin{aligned}
& \mathrm{b}_{0}=\frac{\Sigma \mathrm{x}_{\dot{i}}{ }^{2} \bar{\Sigma}_{\mathrm{y}_{\dot{I}}}-\Sigma \mathrm{X}_{\bar{i}} \bar{y}_{\dot{I}} \Sigma \mathrm{X}_{\mathrm{I}}}{N \Sigma\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}} \\
& =\frac{\overline{\mathrm{y}} \Sigma \bar{x}_{i}^{2}-\overline{\mathrm{x}} \Sigma \bar{x}_{i} \bar{y}_{i}}{N \Sigma\left(\bar{x}_{i}-\bar{x}\right)^{2}} \\
& b_{i}=\frac{\bar{N} \Sigma x_{i} y_{y_{i}}-\Sigma x_{i} \Sigma_{y_{i}}}{N \Sigma\left(x_{i}-\bar{x}\right)^{2}} \\
& =\frac{\bar{\Sigma} \bar{x}_{i} \bar{y}_{i}-\frac{1}{\bar{N}} \Sigma \bar{x}_{i} \Sigma \bar{x}_{i}}{\bar{\Sigma}\left(\bar{x}_{i}-\bar{X}\right)^{2}} \\
& =\frac{\Sigma\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\Sigma\left(x_{i}-\bar{x}\right)^{2}}=\frac{\operatorname{cor}\left(x_{i} y\right)}{\operatorname{Var}(X)} \\
& \bar{b}_{0}=\overline{\bar{y}}-\bar{b}_{i} \overline{\bar{x}}
\end{aligned}
\]
5. If \(p>1\), Solution is more complicated
6. Examples
a. Life Expectancy = Per capita income + infant mortality
\[
\text { i. } \begin{aligned}
\quad \overline{\mathrm{L}} & =b_{0}+b_{i} \mathrm{PCI}+\mathrm{b}_{2} \overline{I M} \\
y & =b_{0}+b_{1} x_{1}+b_{2} x_{2}
\end{aligned}
\]

QHPM
纴：Income 殕
Mortality in deathes／1000 íve bírths亡ifee expectancy in years
\(\mathrm{N}=99\)
iní．Model
\[
\bar{y}_{i}=53.36+.005 \bar{x}_{\overline{1} i}=.058 \bar{x}_{2 i}
\]
b．Interpretation
i．Typicai increment in infe expectancy for \(\$ 100\) increment in income is \(\mathbf{i}\) years

1i．Typical decrement in life expectancy for 100 infant deaths is 5.8 years
ifi．Reiate these results to batches and fitted plane
c．Is this interpretation similar to that obtained via 2 separate regressions？

No：
\[
\begin{aligned}
& \hat{y}=46.88+.007 x_{1} \\
& \hat{y}=61.51-.086 x_{2}
\end{aligned}
\]
only true when \(\operatorname{Cov}\left(X_{1} ; \bar{x}_{2}\right)=0\)

\section*{Module II}

\section*{Lecture 4-2 Trane formations}

Using least squares procēures to estimate alternative functionai forms for the conditional typical sumary: Part I-Transformations

\section*{Lecture Content:}
1. Introduction=-Data Analysis and Theory Testing
2. Transformations- - \(\bar{X}_{i}^{1}\)

\section*{Main Topics:}
1. Purposes of transformations
2. Constructing models with transformed variables
3. Intēpreting transformed models
(There are no transparencies for this lecture.)

QMPM

Topic li.: Introduction to using transformed variables in multiple linear regression


2. We may want to sumarize the data with
\[
c\left(z_{1}, z_{2} \ldots z_{p}\right)=\bar{b}_{0}+b_{1} \bar{z}_{i}^{r_{1}}+b_{2} z_{2}^{r_{2}}+\ldots \bar{b}_{p} z_{p}^{r_{p}}
\]
we can set \(Z_{i}{ }_{i}=X_{i}\)
and get
\[
c\left(y \mid x_{1}, x_{2} \ldots x_{p}\right)=b_{0} \mp b_{1} x_{1} \mp b_{2} x_{2} \ldots \mp b_{p} x_{p}
\]

Now we can use least squares to estimate \(\mathfrak{\sim}\).
3. We may want to summarize the data with
\[
\hat{\bar{y}}=c\left(\bar{y} \mid \bar{x}_{1} x_{2} \ldots x_{p}\right)=X_{1}^{b_{1}}:{x_{2}}_{b_{2}}^{b_{1}}: \ldots \cdot x_{\bar{p}}^{b_{p}}
\]

We need transformation to linearize. Suppose we neā à log transformation: Then
\[
\bar{y}=\log \left(c \mid x_{1}, x_{2}\right)=b_{1} \log x_{1} \mp \mathrm{~b}_{2} \log _{2} \text {, when } p=2
\]

This is now linear in \(\underset{\sim}{b}\) :
II. Distinction between testing theory and doing data analyais
1. Theory may impose functional form for conditional typical
a. Distance in free fall: \(\quad\left(V_{0}=0\right)\)
\[
\bar{D}=\frac{1}{2} g t^{2}
\]

Then
\(\log \bar{D}=\log 5+\log g+2 \log \bar{t}\)

\[
\bar{b}_{0}=\log .5 \quad b_{1}=1 \quad b_{2}=2
\]

Thus;
\[
\hat{y}=\bar{b}_{0}+\bar{b}_{1} \bar{x}_{1}+\bar{b}_{2} \bar{x}_{2}
\]

Analysis involves determining whether empirical data yield coefficients that are ciose to theoretical prediction.
b. Liquidity préference function.
\[
I=b_{0} \mp b_{1}\left(\frac{1}{L-L^{*}}\right)
\]
where I is interest rate

> Lis quantity of money

L* constant "transactions demand for money" L-L* is speculative demand for money \(\mathrm{b}_{0}\) is minimum level of interest

Function is


Graph is rectangular hyperbola with curvature depending on \(b_{1}\).
Let \(X=\frac{1}{L-L^{*}}\)

We get
\[
\begin{aligned}
& \mathrm{I}=\mathrm{b}_{0} \mp \mathrm{~b}_{\mathrm{i}} \overline{\mathrm{x}} \quad \text { as model for conditional typical } \\
& \overline{\mathrm{y}}=\mathrm{b}_{0} \mp \mathrm{~b}_{1} \mathrm{x}
\end{aligned}
\]

Go backwards, i.e., untransform once \(\bar{b}_{0}\) and \(\bar{b}_{i}\) are estimated from data.
c. Several possible forms: government bureaucracy and population size
Bureaucracy

\(\mathrm{b}=1\) constant proportion between \(\bar{B}\) and \(P\)
b \(<1\) economies of scale
b \(>1\) Parkinson's law
log both sides
\(\log B=\log C+b_{i} \log P\)
\(\overline{\text { let }} \quad \overline{\log } \overline{\mathrm{B}}=\hat{\mathrm{y}}, \log \overline{\mathrm{C}}=\mathrm{b}_{0}, \overline{\log } \overline{\mathrm{P}}=\overline{\mathrm{X}}\) \(\hat{\bar{y}}=\bar{b}_{\theta}+\bar{b}_{1} \bar{x}\)
2. Data may require exploratory analysis to find scales (dimensions) for variables: do each variable pair ( \(X_{i}, y\) ) individually.
a. Life expectancy vs. Infant mortality and per capita income

3. Distinction between variable and regressor (carrier). May have fewer independent variables than terms in equation \(\underset{\sim}{X}\) may include functions of \(X\) and cross product is of \(X_{i}\)
ar. Polynomial \(\bar{X}, \bar{X}^{2}, \overline{X^{1}} \ldots . \quad i\) is "order"
b. Cross products \(\quad \bar{x}_{\bar{i}} \bar{x}_{\bar{j}}, \quad \bar{x}_{\bar{i}} \bar{x}_{\bar{j}}-\bar{x}_{\bar{k}}, \quad \bar{x}_{\bar{i}}^{2} \bar{x}_{\bar{j}} \quad\) etc.

Module in
c. Interpretation of cross product terms as "interaztions"
i. Mathematical
\[
\begin{aligned}
& \stackrel{\rightharpoonup}{y}=\bar{b}_{0}+\bar{b}_{1} \bar{x}_{1}+\left(\bar{b}_{2}+\bar{b}_{3}^{-} \bar{x}_{1}\right) \bar{x}_{2} \quad \bar{x}_{2} \text { has varying } \\
& \text { - }=\bar{b}_{0}^{-}+\bar{b}_{1} \bar{X}_{1}+\bar{b}_{2} \bar{X}_{2}+\bar{b}_{3} \bar{X}_{1} \bar{X}_{2} \text { "difforent slopes } \\
& \text { for different folkg" }
\end{aligned}
\]
if. Substantive-multiplicctive effect
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{4}{*}{\(\mathrm{X}_{2}\)} & \multirow{4}{*}{\(<\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(<^{\mathrm{X}_{1}}{ }^{\text {c }}\)}} \\
\hline & & & \\
\hline & & \(I\) & II \\
\hline & & III & IV \\
\hline
\end{tabular}
\begin{tabular}{rl} 
Additive & Multiplicative \\
\(\overline{\mathrm{I}}=<+<\) & \(<.<\) \\
II,II \(=<+>\) & \(<\rangle\). \\
IV \(=>+>\) & \(>\rangle\).
\end{tabular}

592

\section*{QMPM}

Topic 2: Transformations
I. \(X_{i}^{r_{i}}\) with \(r\) positive integer
1. First order modē \(\overline{\mathrm{s}}: \mathbf{r}=\overline{1}\).
\[
\hat{\bar{y}}=\bar{b}_{\overline{0}}+\bar{b}_{1} \bar{x}_{1}+\bar{b}_{2}^{-x_{2}}+\ldots \ldots \bar{b}_{p} \bar{x}_{p}
\]
2. Second order models: \(r_{i}=1\) or 2
a. \(\hat{\bar{y}}=\bar{b}_{0}+\bar{b}_{1} \bar{x}_{i}+\bar{b}_{2} x_{1}^{2}\)

Set \(\bar{X}_{1}^{2}=\bar{z}\)
\(\Rightarrow \overline{\hat{y}}=\bar{b}_{0}+\bar{b}_{1} \bar{x}_{i}+\bar{b}_{2} \bar{z}\)
(One variable; two regressars. Use ols)
b. \(\quad \hat{\hat{y}}=\mathrm{b}_{0}+\mathrm{b}_{1} \overline{\mathrm{x}}_{1}+\mathrm{b}_{2} \mathrm{X}_{1}^{2}+\mathrm{b}_{3} \overline{\mathrm{x}}_{2}+\mathrm{b}_{4} \bar{x}_{2}^{2}+\mathrm{b}_{5} \mathrm{x}_{1} \overline{\mathrm{X}}_{2}\)
set \(\mathrm{x}_{1}^{2}=\bar{z}_{1} ; \bar{x}_{2}^{2}=\bar{z}_{2} ; \bar{x}_{1} \bar{x}_{2}=\bar{z}_{3}\)
Get \(\hat{\bar{y}}=\mathrm{b}_{0}+\mathrm{b}_{1} \bar{x}_{1}+\mathrm{b}_{2} \mathrm{z}_{1}+\mathrm{b}_{3} \overline{\mathrm{x}}_{2}+\mathrm{b}_{4} \bar{z}_{2}+\mathrm{b}_{5} \bar{z}_{3}\)
(Two variables: \(\bar{x}_{1} ; \bar{x}_{2}\); five regressors: \(\bar{x}_{1} ; \bar{X}_{2}, \bar{X}_{1}^{2}\), \(\left.\bar{x}_{2}^{2}, \bar{x}_{1} \bar{x}_{2}\right)\)
3. Third order models, etc. invoive 3 or more Xs multiplied (can be \(\bar{X}_{i} X_{i} X_{i}, X_{i} X_{j} X_{k}, \bar{X}_{i} \bar{X}_{i} \bar{X}_{k}\), etc.)
4. Note: forms may be suggested by theory or residuals
II.. \(\bar{r}\) not a positive integer
1. Reciprocail r = - 1
\[
\begin{aligned}
& \text { If } \overline{\hat{y}}=b_{0}+b_{1} \frac{1}{x_{1}}+b_{2} \frac{1}{\bar{x}_{2}}+\ldots \\
& \text { Set } z_{1}=\frac{1}{x_{1}} \quad z_{2}=\frac{1}{x_{2}} \ldots \\
& \text { Get } \hat{\hat{y}}=b_{0} \mp b_{1} z_{i} \mp b_{2} z_{2} \mp \ldots
\end{aligned}
\]
2. Logarithmic
\[
\hat{\dot{y}}=b_{0} \mp b_{1} \log x_{1} \mp b_{2} \log x_{2} \mp \ldots
\]
4. Squāré root
\[
\hat{\hat{y}}=\bar{b}_{0}+\bar{b}_{i} \bar{x}_{i}^{1 / 2}+\bar{b}_{2} \bar{x}_{2}^{1 / 2}+\ldots
\]

\section*{Module II}
C. In generai
1. \(\hat{\dot{y}}=\bar{b}_{0}^{-}+\bar{b}_{1} \bar{X}_{1}^{r}+\bar{b}_{2} \bar{X}_{2}^{r}+\ldots\)
2. \(\hat{y}=\bar{b}_{0}+\dot{\bar{b}}_{1} \dot{x}_{1}^{r_{1}}+\dot{b}_{2} \bar{x}_{2}^{r_{2}}+\ldots\)
3. Use exploratory tools or theory to find each \(r_{i}\)

\section*{QMPM}

Topic 3. Interpreting transformations-Some transformations have useful substantive or mathematical interpretations
I. Univariāē case--logarithms

Four cases:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{4}{*}{Dependent Variable \(\mathbf{Y}\)} & & \multicolumn{2}{|c|}{\[
\begin{gathered}
\text { Independent } \\
\text { Variable } \\
\mathrm{X}
\end{gathered}
\]} \\
\hline & & \[
\begin{gathered}
\text { Not } \\
\text { Logged }
\end{gathered}
\] & Logged \\
\hline & \[
\frac{\text { Not }}{\text { Logged }}
\] & I & III \\
\hline & Logged & II & IV \\
\hline
\end{tabular}
1. Case I Both dependent and independent variables linear.

Conceptual model: \(\hat{y}=b_{o}+b_{1} x\)
Differentiate both sides with respect to \(x\) :
\(\frac{\mathrm{d} \hat{y}}{\mathrm{dx}}=\mathrm{b}_{1}\)
Thus, \(b_{1}\), the slope of the line, in the amount by which \(\hat{y}\) changes for a unit change in \(\bar{x}\).
2. Case II Dependent vāriablē logged; independent variable linear. (Called "log-1inear.")
Conceptual model: \(\hat{\mathbf{y}}=\mathrm{b}_{0} \mathrm{e}^{\mathrm{b}_{1} \mathrm{x}}\)
log version (taking logs of both sides)
\(10 \overline{\mathcal{E}} \hat{\mathrm{y}}=10 \mathrm{~g}_{\mathrm{o}}+\mathrm{b}_{1} \mathrm{x}\)
Diffērentiate both sides with respect to \(x\) :
\[
\frac{d y}{d x} \frac{1}{\hat{\hat{y}}}=\dot{b}_{1}
\]

But the left side of this is the ratio of the proportionate change in \(\hat{y}\) to a unit change in \(x\) :
\[
595
\]
\[
\frac{d \hat{y}}{d x} \frac{1}{\hat{y}}=\frac{d \hat{y} / \hat{\mathrm{y}}}{\mathrm{dx}}=\bar{b}_{1}
\]

So \(b_{j}\) can be interpreted \(\bar{a} \bar{s}\) the proportion \(\hat{\mathbf{y}}\) changes for a unft change in \(\bar{x}\) or \(100 \times b_{i}\) gives the percentage change in \(\hat{\mathbf{y}}\) for \(\bar{a}\) unit change in \(\mathbf{x}\).
3. Case III Dependent variābē linear, independent variable logged. (Cālled "linear=log.")
Concéptuā \(\overline{1}\) mode \(\overline{1}: e^{\overline{\hat{y}}}=\bar{b}_{0} \mathbf{x}^{b_{i}}\)
log version:
\[
\hat{y}=\overline{\log }_{0}+\bar{b}_{1} \log x
\]

Differentiate both sides with respect to x :
\(\frac{\mathrm{d} \hat{\mathbf{j}}}{\mathrm{dx}}=\frac{\mathrm{b}_{1}}{\mathrm{x}}\)
Multiply both sides by \(x\) :
\[
\frac{\mathrm{d} \hat{\mathrm{y}}}{\mathrm{~d} \dot{x}}=\mathrm{b}_{\overline{1}}
\]

But the left hand side is the same as
\[
\frac{d \hat{y}}{d x} x=\frac{\frac{d \hat{y}}{d x}}{\frac{d x}{x}}=b_{1}
\]

So \(b_{i}\) can be interpreted as the ratio of the amount y change to a proportionate change in \(x\). Thus b \(1 / 100\) can bé read as the amount \(\hat{y}\) changes when \(\bar{x}\) doubies, \(\overline{1} . \frac{1}{e}\)., increases by \(100 \%\)
4. Case iv Both dependent and independent variables logged (Called
"1og-10g:")
Conceptual model: \(\hat{\mathbf{y}}=\mathrm{b}_{\mathrm{o}} \mathrm{x}^{\overline{\mathrm{B}}_{\mathbf{I}}}\)
iog version:
\[
\log \hat{y}=\log b_{0} \mp b_{i} \log x
\]

Differentiate with respect to x :
\[
\frac{d \hat{y}}{d x} \frac{i}{\hat{y}}=\frac{\bar{b}_{1}}{x}
\]

Multiply both sides by \(x\) :
\[
\frac{d \hat{y}}{d x} \frac{\bar{x}}{\hat{y}}=b_{i}
\]

But left side is ratio of proportionate change in \(\hat{\mathbf{y}}\) to proportionate change in \(\bar{x}\) :
\[
\frac{\mathrm{d} \hat{\mathrm{y}}}{\mathrm{dx}} \frac{\mathrm{x}}{\hat{\mathrm{y}}}=\frac{\mathrm{d} \hat{\mathrm{y}} / \hat{\hat{y}}}{\mathrm{dx} / \mathrm{x}}=\mathrm{b}_{1}
\]

Or it can be read as the ratio of the percentage change in \(\hat{y}\) for a percentage change in \(x\)-but this is elasticity. So \(b_{1}\) can be interpreted as the elasticity of \(y\) with respect to \(x\).

İ. Multiple X stiuations
1. Exponential model
\[
\begin{aligned}
& y=b_{0} \mp b_{1} x_{1} \mp b_{2} x_{2} \mp \ldots \\
& 10 g=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\ldots
\end{aligned}
\]
2. Reciprocal
\[
\begin{aligned}
& \bar{y}=\frac{\bar{i}}{b_{0}+b_{i} x_{i}+b_{2} x_{2}+\ldots} \\
& \frac{1}{\hat{y}}=\bar{b}_{i}+b_{i} \bar{x}_{i}+\bar{b}_{2} \bar{x}_{2}+\ldots
\end{aligned}
\]
III. Notes:
\(\overline{1}\). The least squares estimates apply to the transformed models only
2. Avoid transforming \(\hat{y}\) if possible. This may have consequences for inference
3. Discuss problems in expanding the number of parameters to fit the data. Issues of parsimony, complexity, and the substantive context of the problem
4. Always redefine variables as variables, parameters as parameters
\[
597
\]

Lectüre 4-3. Indicator Variables

Using least squares procedures to estimate aiternative functionai forms for for the conditional typical summary: Part II-Indicator Variables

\section*{Lecture content:}
1. Constructing variables and data sets for indicator variables
2. Interpreting models containing indicator variabiē

Main Topics:
1. Introduction to indicator variables
2. Simple 0/1 indicator variables
3. Linear and other functional forms for indicators
4. Splines-Shifts in intercept and siope

\section*{Tools Introduced:}
1. Indicātor Variables
2. Splines

\section*{Topic 1: Introduction to indicator variabies}
I. Basic frbue: Effective bumary of data may require the construction óf "variabies" and "daca" to yield an appropriate form for the conditional typical for certain data sets
1. An \(\bar{x}\) may be categorical rather than continuous. Example: Race; sex; region, seasoñ
2. Añ \(\overline{\mathrm{X}}\) may take \(\bar{a}\) known or hypothesized functional form but data may be lacking.
Examplé: Ordēé cátegories such as income, educational attainment
3. Tine trende may be suspected

Example: Growth in popuiation, sales volume, salariés, property values, infiation rate
4. Curves, cycilc behavior, or other consistent changes in intercept and slope may be evident. Example: Admittance volume for emergencies in a hospitai, number of enrolié participants in training programs
II. How can we construct aiternative functional forms for the conditional typical which will permit us to use least squares éstimation procedures in these special situations?
1. Use Indicator (dumy or awitching) variable which takes on value of i when special condition holde and is 0 otherwise for categorical wariables
2. Ube fadicator varlabies which take on linear or other forms (quadratic, ētec.) when trends or functional forms ere expected and siope is different
3. Use ifnear spines (connected or disconnected) to track a special curve where shifts in intercept and slope are expected

Topic 2: Indícator variabies which give rise to shífés in the intercept
I.: Categoricai variables only (for heuribtic purposes)

The typicai value may deperd upon the state of the categorical variable
1. Dichotomous--0/1: Two levels or states
a. Example: infe expectancy for industrial and . nonindustriai nations
b. We can construct a model for the coniftional typical (2) (mean) as follows:

C (LE|National btatus) \(=\overline{\mathrm{y}}=\bar{b}_{\overline{0}}+\bar{b}_{\overline{1}} \mathrm{X}_{\overline{1}}\)
where \(\quad X_{1}= \begin{cases}1 & \text { if nation is industrial, } \\ 0 \text { otherwise }\end{cases}\)
Intérpretation:
Effect of model is to estimãte:
\(\overline{\hat{y}}=b_{\overline{0}} \quad\) when nation is not industrial
\(\hat{\mathbf{y}}=\mathrm{b}_{0} \mp \mathrm{~b}_{1}\) when nation is industriā
I.é, whé not indistriā as line horizontal to \(X\) axis with intercept \(=b_{0}\). When injustrial, typical, conditional on being indistrial, has intercept \(b_{0}+b_{1}\). The meanes of the nonindustrial will be bo, of the industrial, \(b_{0} \mp b_{1}\). The value of \(b_{1}\) indicates how different the ewo groups are.

Thus \(X\) is the variable thāt indicates which category of nation is béing considered.
c. Can estimate model in b. using ols:
\[
\hat{\mathrm{y}}=49.49+22.18 \mathrm{x} \quad \mathrm{R}^{2}=.44
\]

Interpret result
2. Polychotomous=-More then two levels or atates
a. Example: Life expectancy for industrial, nonindustrial and petroleum exporting countries
\[
600
\]
b. Conditional typical modē
\[
\begin{equation*}
C(L E \mid \text { National Status })=\hat{\bar{y}}=b_{0}+b_{1} \bar{X}_{1}+b_{2} \bar{X}_{2} \tag{4}
\end{equation*}
\]
where
\begin{tabular}{ccl}
\(\mathrm{X}_{1}\) & \(\mathrm{X}_{2}\) & National Status \\
\hline \(\mathbf{0}\) & 0 & Petroleum Exporting \\
0 & 1 & Nonindustriai \\
1 & 0 & Industriai
\end{tabular}
c. OLS estimates
\[
\begin{equation*}
\hat{y}=50+21.67 x_{1}=.57 x_{2} \quad R^{2}=.43 \tag{5}
\end{equation*}
\]

indicator variables are requíred
II. Continuous and categoricai variabies combined. We can combine continuoū and categorical variabiés tō yield cumairiés of dāta. (Cf. analyés óf covariance:)
1. Dichotomous indicator
a. Ēxample: Life expectancy by per capita income and industrial status
b. Conceptual model
\[
\bar{C}(\underline{L} E \mid \text { status })=\hat{y}=b_{0}+\bar{b}_{1} \bar{x}_{1}+\bar{b}_{2} \bar{x}_{2}
\]
where
\[
\begin{aligned}
& x_{1} \quad \text { is per capita income } \\
& x_{2}=\left\{\begin{array}{l}
1 \text { if nation is industrial } \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
\]
\(\bar{c}\). Interpretation of \(b_{i}\)
\[
\overline{\hat{y}}=b_{0}+b_{i} X_{i 1} \text { when nation } i \text { is not industrial }
\]
\[
\hat{y}=\left(b_{0} \mp b_{2}\right)+b_{1} X_{i 1} \text { when nation } i \text { is industrial }
\]
i.e., \(b_{j}\) is typical shift in LE conditional on being industrial. Note that the lope of the ifné relating lifé expectancy and per capítà income in the same for both industriai and nonindustrial nations; only the level is different.
\[
601
\]
d. OLS estimates:
\[
\begin{equation*}
\hat{y}=47.15+.005 x_{1}+4.72 x_{2} \tag{7}
\end{equation*}
\]
2. Another example: Life expectancy by log(per capita
income) and industrial status
a. Conceptual model:
\[
\hat{y}=b_{0} \mp b_{i} \log x_{1} \mp b_{2} x_{2}
\]
where \(X_{1}\) and \(X_{2}\) are defined in 1.
b.. OLS estimates:
\[
\begin{equation*}
\overline{\hat{y}}=4.74+18.51 x_{1}+1.61 x_{2} \quad \quad \dot{x}^{2}=.72 \tag{8}
\end{equation*}
\]
3. Polychotomous indicator
a. Example: Lifé expectancy by per cāpitā income; infant mortality, industrial and petroleum exporting statū
b. Concéptual modèl:
\[
C(\mathrm{LE} \mid \mathrm{PCI}, \mathrm{IM}, \text { Status })=\hat{\mathrm{y}}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1}+\bar{b}_{2} \mathrm{X}_{2}+\mathrm{b}_{3} \mathrm{x}_{3}+\mathrm{b}_{4} \mathrm{X}_{4}
\]
where \(X_{1}\) is per capita income

\begin{tabular}{|c|c|c|}
\hline \(\mathrm{x}_{3}\) & \({ }_{4}\) & status \\
\hline 0 & 1 & noñndustrial \\
\hline 0 & 0 & petroleum exporting \\
\hline
\end{tabular}
c. Interpreting \(\bar{b}_{i}\)
\[
\begin{aligned}
\hat{y} & =\bar{b}_{0}+\bar{b}_{1} \bar{x}_{1}+\bar{b}_{2} \bar{x}_{2} \text { when petroieum exporting } \\
& =\left(\bar{b}_{0}+\bar{b}_{3}\right)+\bar{b}_{1} \bar{x}_{1}+\bar{b}_{2} \bar{x}_{2} \text { when industriai } \\
& =\left(\bar{b}_{0}+\bar{b}_{4}\right)+\bar{b}_{1} \bar{x}_{1}+\bar{b}_{2} \bar{x}_{2} \text { when nonindustrial }
\end{aligned}
\]
d. OLS estimates
\(\hat{y}=54.74+.005 \bar{x}_{1}-.059 \mathrm{x}_{2}-1.77 \bar{x}_{3}-1.36 \mathrm{x}_{4} \quad \mathrm{x}^{2}=.65\)
\[
602
\]
III. More complex situations

Indicator, continuous, tranēformed, polynomial, and interaction variables may be combined to construct effective summary of data
1. Example: Continuē Life Expectāncy
a. Is an interaction rélevant?
1. Estimaté: \(\hat{y}=b_{0}+b_{1} \bar{X}_{\overline{1}}+b_{2} \bar{X}_{2}+b_{3} \bar{X}_{1} X_{2}\)
whère \(X_{1}\) ī per capitā income
\[
\bar{X}_{X_{1}}^{1} \text { is infant mortality }
\]
11. OLS estimatēs:
\[
\begin{aligned}
\hat{y}= & 55.95+.004 x_{1}-.088 x_{2}+2.69 \times 10^{-5} X_{1} \bar{x}_{2} \\
& \left(\bar{a} 11 \text { are } \overline{\text { signjificant })} \quad \bar{R}^{2}=.68\right.
\end{aligned}
\]
b. \(\hat{\mathrm{y}}=\mathrm{b}_{\mathrm{O}}+\mathrm{b}_{\mathrm{i}} \mathrm{INC}+\mathrm{b}_{2}\) Mort \(+\mathrm{b}_{3}\) IND \(+\mathrm{b}_{4}\) NonIND \(+\mathrm{b}_{5}\) INC•Mort
\(\hat{\mathrm{y}}=53.89+.003 \mathrm{x}_{1}-.09 \mathrm{x}_{2}+5.97 \mathrm{x}_{3}+2.63 \mathrm{x}_{4}+3.31 \times 10^{-5} \mathrm{x}_{1} \mathrm{x}_{2}\)
(discuss change in eign in national status variables)
\[
\mathrm{R}^{2}=.68
\]
c. \(\hat{y}=b_{\overline{0}}+b_{1} \operatorname{logINC}+b_{2} \operatorname{logMort}+b_{3}\) Ind \(+b_{4}\) NonInd +
\(b_{5}\) loginc-logMort
\(\hat{y}=46.53+9.33108 x_{1}-19.87 \log _{2}+4.6 x_{3}+3.0 x_{4}+\)
\(3.1\left(\log x_{1} \log x_{2}\right)\)
\[
R^{2}=.80
\]
2. Another appifcation: Seasonal Shifts
a. Example: Smoothed D.C. General Hospital \(\bar{Z}\) emergency admites by month 1970-1975
(Note-recall data from lecture on smoothing)
\[
60_{3}
\]
b. Conceptual model:
\[
\bar{C}(\text { PEA } \mid \text { Season })=b_{0}+b_{1} \bar{x}_{1}+b_{2} x_{2}+b_{3} \bar{x}_{3}
\]
where:
\[
\begin{array}{lll}
\bar{X}_{1}=\overline{1} & \text { iff gumer (June, July, Aug.) ; } \\
\bar{X}_{1}=1 & \text { iff fall } & \text { (Sept, Oct. Nov.); } \\
\bar{X}_{3}=1 & \text { iff winter (Dec., Jan., Feb.); }
\end{array}
\]
\(\bar{b}_{0}\) gives baseíne for apring
c. OLS estimates:
\[
\hat{y}=8.2+.4 x_{1}+.4 x_{2}=.2 x_{3}^{-} \quad \bar{R}^{2}=.50
\]

Discuss shape of effēts; comparative level
3. More than indicator variable
a. Example: Income by race and sex
b. Concēptuā model:
\[
\begin{equation*}
C(\text { Inc } \mid \text { Ràce, Sex })=b_{0}+b_{1} X_{1}+b_{2} \bar{x}_{2} \tag{11}
\end{equation*}
\]
\(\begin{array}{lll}\text { where } & \bar{X}_{1} \text { indicates race } \quad \text { (two categoriēs) } \\ & \bar{X}_{2} \text { indicates sex. } & \text { (two categoriés) }\end{array}\)
c. Variable definitions:

d. Interpreting \(b_{i}\) :
\[
\begin{array}{ll}
\mathbf{b}_{0} & \text { is level for male black } \\
\bar{b}_{0} \mp \bar{b}_{1} & \text { is levél for male white } \\
\mathbf{b}_{0} \mp \bar{b}_{2} \text { is level for female black } \\
b_{0} \mp \bar{b}_{1} \mp \bar{b}_{2} \text { is level for female white } \tag{12}
\end{array}
\]
e. Alternative racé-sex indicator using intéraction
XVI.II. 255
1. Assume single veriable with four levels:
\begin{tabular}{cccl}
\(\bar{x}_{1}\) & \(\bar{x}_{2}\) & \(\bar{x}_{3}\) & \\
\hline\(\overline{0}\) & \(\overline{0}\) & \(\overline{0}\) & male black \\
\(\mathbf{0}\) & \(\mathbf{0}\) & \(\overline{1}\) & wale white \\
0 & 1 & 0 & female black \\
1 & 0 & 0 & female white
\end{tabular}

This structure does not assume adiftivity of race and sex éefects
11. Mode1:
\[
\overline{\text { Inc }}=\bar{b}_{0}+\bar{b}_{1} \bar{x}_{1}+\bar{b}_{2} \bar{x}_{2}+\bar{b}_{3} \bar{x}_{3}
\]
ivi. Interpreting \(\bar{b}_{i}\)
\(b_{0}\) is level of male black
\(b_{0}+b_{3}\) is \(\overline{\text { revel of male white }}\)
\(b_{0}+b_{2}\) is ievel of female black
\(b_{\theta}+b_{1}\) is level of female white

Topic 3: Numeric indicator variables=-known or presumed functional forms for an \(X\) variable-ēstimatés of slopes
i. Constructed variables
1. Presumed linear
a. Example: Life expectancy by income category-low, middle; high
b. Conceptual model:
\[
\mathrm{c}(\text { LE } \mid \text { Income })=b_{0}+b_{1} x_{1}
\]
where: \(\mathrm{x}_{1}=\left\{\begin{array}{lll}1 & \text { if low } & \mathrm{N}=29 \\ 2 & \text { if middle } & \mathrm{N}=19 \\ 3 & \text { if } \mathrm{high} & \frac{N}{}=23 \\ & & \end{array}\right.\)
c. OLS estimates:

2. Presumed iogarithmic
a. \(\hat{y}=\bar{b}_{0}+\bar{b}_{\bar{l}} \log \bar{x} \quad\) where \(\quad \bar{x}= \begin{cases}\frac{1}{2} & \text { low } \\ \frac{2}{3} & \text { middle } \\ \text { high }\end{cases}\)
b. OLS
\[
\overline{\hat{y}}=39.94+40.34 \log _{10} \bar{x}
\]
3. Other forms: quadratic, etc.
4. Time trends
a. Linear time-Example: DC general
b. Model:
\[
C(P E A \mid \text { Season, Year })=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+b_{4} x_{4}
\]
\[
606
\]

QMPM
where \(\bar{X}_{1}, \bar{X}_{2}, \bar{X}_{3}\) are seasonal indicators \(x_{4} 18:\)
\begin{tabular}{r|c} 
Year & \(X_{4}\) \\
\hline 1970 & \(\mathbf{0}\) \\
71 & 1 \\
72 & \(\frac{1}{2}\) \\
73 & 3 \\
74 & 4
\end{tabular}
c. OLS estimates
\[
\hat{Y}=8.2+.4 \bar{x}_{1}+.4 x_{2}=.2 x_{3}+.01 X_{4} \quad \overline{\mathrm{R}}^{2}=.49
\]
d. Other functional forms possible: quadratic, logarithmic, etc.

Module II

Topic 4: Combining shifts in intercept and slope: Splines
I. . We can construct variābes and data to handle combinations or special cases. Heré function is continuous but derivative is discontinuous.
1. Two linear time trends: intersection known, slope unknown \(b_{0}+b_{1} X_{1} \mp b_{2} X_{2}\)
\begin{tabular}{c|c}
\(\bar{X}_{1}\) & \(X_{2}\) \\
\hline\(=\frac{4}{2}\) & 0 \\
\(=\frac{3}{2}\) & 0 \\
\(=2\) & 0 \\
\(=1\) & 0 \\
0 & \(\underline{0}\) \\
\(\underline{0}\) & 1 \\
0 & 2 \\
0 & 3 \\
\(\vdots\) & \(\vdots\) \\
\(\vdots\) & \(\vdots\)
\end{tabular}
\begin{tabular}{c|c}
\(X_{1}\) & \(\bar{X}_{2}\) \\
\hline 0 & 0 \\
1 & 0 \\
2 & 0 \\
3 & 0 \\
4 & 0 \\
5 & 0 \\
5 & 1 \\
5 & 2 \\
. &. \\
. &.
\end{tabular}

2. Two linear trendes: intersection unknown slopē unknowi

Need third indicā̄ō variable to hande intersection \(\bar{b}_{0}+\bar{b}_{1} \bar{x}_{1}+\bar{b}_{2} \bar{x}_{2}+\bar{b}_{3} \bar{x}_{3}\)

\begin{tabular}{llll}
\(\overline{1}\) & -1 & - & 0 \\
2 & 2 & 0 & 0 \\
3 & 3 & 0 & 0 \\
4 & 4 & 0 & 0 \\
5 & 5 & 0 & 0 \\
6 & 5 & 0 & 1 \\
7 & 5 & 1 & 1 \\
8 & 5 & 2 & 1 \\
9 & 5 & 3 & 1 \\
9 & & 4 & 1
\end{tabular}
\(\mathrm{b}_{0}=\) intercept of line \(\overline{1}\)
\(b_{i}=\) slope of line \#l
\(\bar{b}_{2}=\) slope of line


QAPM

3. Muitiple peaks


Data Structure
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\(\bar{x}_{1}=1\)} & \multicolumn{2}{|l|}{\(\mathrm{x}_{2}=2\)} & \multicolumn{2}{|l|}{\(\mathrm{X}_{3}=3\)} & \multicolumn{2}{|l|}{\(\mathrm{x}_{4}=4\)} & \multirow[b]{2}{*}{\(\mathrm{z}_{4}\)} \\
\hline \(\overline{\mathbf{x}}\) & \[
\overline{\mathrm{x}}_{1}
\] & \(\bar{x}_{2}\) & \[
\begin{gathered}
\bar{x}_{-} \\
\hline
\end{gathered}
\] & \(\bar{X}_{4}\) & \(\bar{z}_{\overline{1}}\) & \(\bar{z}_{2}\) & \[
z_{3}
\] & \\
\hline 0 & İ & 2 & 3 & 4 & 0 & 0 & 0 & \(\overline{0}\) \\
\hline 1 & 1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\
\hline 2 & 1 & 2 & 3 & 4 & 2 & 1 & 0 & 0 \\
\hline 3 & 1 & 2 & 3 & 4 & 3 & 2 & 1 & 0 \\
\hline 4 & 1 & 2 & 3 & 4 & 4 & 3 & & 1 \\
\hline
\end{tabular}

Model
\[
\hat{y}=b_{0}+b_{1} z_{1}+b_{2} z_{2}+b_{3} z_{3}+b_{4} z_{4}
\]
whēre
\[
\begin{aligned}
& \bar{z}_{1}=\bar{x} \\
& \bar{z}_{\overline{2}}=\max \left(x-x_{\overline{1}}, 0\right) \\
& z_{\overline{3}}=\max \left(x-x_{2}, 0\right) \\
& \bar{z}_{\overline{4}}=\max \left(x-x_{3}, 0\right)
\end{aligned}
\]

Thes \(b\) is siope over first segment. Other \(\bar{b}_{i}\) represent change \({ }^{1}\) in ilope from preceeding segment.
\[
\begin{array}{lll}
\text { I.e., slope for } \quad X_{1}<X<X_{2} & \text { is } \quad b_{1}+b_{2} \\
& X_{2}<X<X_{3} & \text { is } \quad b_{1}+b_{2}+b_{3} \text { etc. }
\end{array}
\]

GMPM
Lecture 4-3
Transparency Presentation Guide
\begin{tabular}{|c|c|c|}
\hline Outline Location & Transparency Number & Transparency Description \\
\hline Beginning & 1 & Lecture 4-3 Outline \\
\hline \multicolumn{3}{|l|}{Topic 2} \\
\hline Section A & & \\
\hline 1.b & 2 & Conceptual Mode1 \\
\hline 1.b & 3 & Scatterplot of ilfe expectancies \\
\hline 2.b & 4 & Model of itfe expectancies for nations \\
\hline 2. \(\bar{c}\) & 5 & Scatterplot of iffe expectancies \\
\hline \[
\begin{gathered}
\text { Section } B \\
1 . \mathrm{b}
\end{gathered}
\] & 6 & Combining indicator and continuous variables \\
\hline 2 & 7 & Scatterplot of life expectancies vs per capita income \\
\hline 2.b & \(\overline{8}\) & Scatterplot of life expectancies vs \(10 g\) (per capita income) \\
\hline 3. \({ }^{\text {d }}\) & 9 & Geometrical representation \\
\hline \multicolumn{3}{|l|}{Section C} \\
\hline 3.6 & & More than 1 indicater \\
\hline 3.1 & & Another structure \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \(\frac{\text { Topic } 3}{\text { Section }}\) & & \\
\hline 4. \(\overline{\mathrm{a}}\) & & D.C. General Hospital conceptual model \\
\hline \multicolumn{3}{|l|}{Topic 4} \\
\hline \multicolumn{3}{|l|}{Section A
1. Linear Spline--Intersection known} \\
\hline 2. & & Linear Spline--Intersection unknown \\
\hline 3. & & Multiple pēāks̄ \\
\hline & & II. 262611 \\
\hline
\end{tabular}

Lecture 4-3
Indicator Variables: Using Least Squares procedures to estimate alternative functional forms for the conditional typical nummary. Part II

Lecture Content:
i.) Constructing variables and data sects for iadiáator. variables.
2) Interpreting models containing indicator variables.

Main Topics:
1.) Introduction to indicator variables.
2) Simple \(0 / 1\) indicator variables.
3) Linear and other functional forms for indicators.
4) \(S_{\text {planes- Shifts }}\) in intercept and slope.

Conceptual Model:
\[
\bar{c}\left(L E \mid N_{\text {ational }} \text { status }\right)=b_{0}+b_{1} x_{0}
\]
where: \(x_{i}= \begin{cases}1 & \text { if nation is industrial. } \\ 0 & \text { otherwise. }\end{cases}\)


Interpreting \(\bar{b}_{i}\) :
\(\hat{y}_{i}=b_{0}\) when nation \(i\) is nenindestriad.
\(\hat{y}_{i}=b_{0}+b_{\text {, when a }}\) watson \(i\) is industrial.
Scattecplot
Module: II


Life Expectancy By National Status
\[
\begin{aligned}
& \text { Cenceptinal Model: } \\
& C\left(L E / N_{\text {ational }} \operatorname{statas}\right)=b_{0}+b_{i} x_{1}+b_{2} x_{2}
\end{aligned}
\]

Voriable Deffinitims


Interpreting \(\bar{b}_{i}{ }^{\text {: }}\)

Dete Matrix:

\[
\begin{array}{r}
616 \\
\text { xvi.ī. } 266
\end{array}
\]


617
618
4.3

Combiaing Indicator and Continuous Sariables
Example: Lite Expectancy by per capita income and mation's induátrial statié

Comeoptual model:
\[
\bar{c}\left(L \bar{E} \mid I_{n} \text { dustrial statia }\right)=\hat{y}=b_{0}+b_{1} x_{1}+b_{2} x_{2}
\]
where:
\(X_{1}\) is por rapita inrome
\[
x_{2}= \begin{cases}1 & \text { if mation is inductrial, } \\ 0 & \text { itherwise }\end{cases}
\]

Interpectation of \(\boldsymbol{b}_{i}\) :
\(\hat{y}_{i}=b_{0}+b_{i} \bar{x}_{i 1}\) if nation \(\bar{i}\) is
\(\left.x_{i}=b_{0}+b_{3}\right)\) not industrial
\(\hat{y}_{i}=\left(b_{0}+b_{3}\right)+b_{i} x_{i 1}\) if motion \(i\) is induatrial

Thus, \(b_{2}\) is shift in fife expretangy conditional on bering industrial.
oLS estimates:
\[
\begin{gathered}
\hat{\mathbf{y}}=47.15+.005 x_{1}+4.92 X_{2} \quad \\
619 \\
\\
\\
\text { xvi.11. } 268
\end{gathered}
\]
- NONHOMFIMA
0 indisitug

\([8]\)
\[
\begin{aligned}
& \hat{y}=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+b_{4} x_{4} \\
& \hat{y}=54.74+.005 x-.059 x_{2}-1.77 x_{3}-1.36 x_{4} \\
& R^{2}=.65
\end{aligned}
\]


Wrov \(\bar{I}: \hat{y}^{2}=b_{0}+b_{1} x_{1}+b_{2} x_{2} \quad\) Petrolewn Exporting
Prace II: \(\hat{\bar{y}}\left(b_{0}+b_{y}\right)+b_{1} \bar{x}_{i}+b_{2} \bar{y}_{\bar{z}} \quad\) Non- Endustrial
Nane III : \(\hat{y}^{2}\left(b_{0}+b_{1}\right)+b_{1} x_{1}+b_{2} y_{2}\) Industrial KOCs estimentes indicote thet
\[
\text { xvI.II. } 271624
\]
D.C. Geureal Hospital: \% Emengenty Admits (Santiod Dito)
\[
\begin{array}{ll}
b_{0}=8.2 & x_{1}=1 \text { if summer } \\
x_{2}=1 \text { if fall } \\
x_{3}=1 \text { if wointer }
\end{array}
\]

\[
\begin{gathered}
\bar{y}=8.2+.4 x_{1}+.4 x_{2}-.2 x_{3} \\
R^{2}=.50
\end{gathered}
\]

626
625

More than 1 indicator
Income by race sex
 where \(x_{i}\) is race indicator \(x_{2}\) is sex indicator.


Interpreting \(b_{i}\) :
b. is typical level for male black. B. - : is typied laval for make white. \(b_{0}+b_{a}\) is typical level for female black. \(b_{0}+b_{i}\) the is typical level for female white: (other variables may be aided to model.)
\[
9-3
\]

627
\[
\text { XVI. II. } 273
\]

ERIC

GMPM

Aoother structure for race, sex indir.tors.
Assuming no addifivity of effects.
\begin{tabular}{ccccc}
\(\bar{x}_{1}\) & \(x_{2}\) & \(x_{3}\) & & mele bleck \\
\hline 0 & 0 & 0 & 0 & male white \\
1 & 0 & 0 & fewole bleck \\
0 & 1 & 0 & feme \\
0 & 0 & 1 & female white
\end{tabular}

Model:
\[
\overline{I_{n E}}=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}
\]

Interpisting \(b_{i}\) :
bo is typical level of male black \(b_{0}+b_{\text {, }}\) is typical huel of male white \(b_{0}+b_{z}\) is typioal levol of temole black \(b_{0}+b_{3}\) is typieal level of female white
D.C. General Hospital

Comeptinal Model:

C (PEA/Seasow, Year)
\[
=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{2} x_{3}+b_{4} x_{4}
\]
where:
\(x_{1}, x_{2}, x_{3}\) are season indicators
and \(x_{y}\) is linear time \((y\) oar \()\)
ie., \(\begin{array}{cc}\text { Year } & X_{y} \\ \\ & 1970 \\ & 0 \\ & 1972 \\ & 19 \\ & 1973 \\ & 1974 \\ & 3 \\ & \end{array}\)
Results:
\[
\begin{aligned}
& \hat{y}=8.2+.4 x_{1}+.1 x_{2}-.2 x_{3}+.01 x_{4} \\
& R^{2}=.49 \\
& \quad \begin{array}{l}
639 \\
\\
\quad \operatorname{xvi} 111.275
\end{array}
\end{aligned}
\]

QMPM

Linear Śspline Interacection Known
Two Lincer Time Trends


\[
630
\]

Linear Spline:
Intersection and slopes unknown
Two time trends

Data Structure
\begin{tabular}{cccc} 
obs & \(x_{1}\) & \(x_{2}\) & \(x_{3}\) \\
1 & 1 & 0 & 0 \\
2 & 2 & 0 & 0 \\
3 & 3 & 0 & 0 \\
4 & 4 & 0 & 0 \\
5 & 5 & 0 & 1 \\
6 & 5 & 1 & 1 \\
7 & 5 & 2 & 1 \\
8 & 5 & 3 & 1 \\
\(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\)
\end{tabular}
\[
\begin{aligned}
\hat{y}= & b_{0}+b_{1} x_{1} \\
& +b_{2} x_{2}+b_{3} x_{3}
\end{aligned}
\]

Linear Spline Seatterplot


Multiple peaks


Data Structure
\[
\begin{aligned}
& x_{1}=1 ; x_{2}=2 ; x_{3}=3 ; x_{4}=4 \\
& \text { Model: } \quad \hat{y}=b_{0}+b_{1} z_{i}+b_{z} z_{z}+b_{3} z_{3}+b_{y} z_{y} \\
& \text { where: } \\
& \text { Ei=x } \\
& E_{i}=\operatorname{mar}\left(x-x_{0}, 0\right) \\
& 3_{3}=\max \left(x-x_{0 j} 0\right)
\end{aligned}
\]

Den 6 is slope ofer first segment, other \(b_{i}\). jives dree in stope jour last segment
Tie., slope for \(x_{1}<x<x_{2}\) is \(b_{1}+b_{2}\) for \(\bar{x}_{2}<x<x_{3}\) is \(\bar{b}_{1}+b_{2}+b_{3}\), etc.

Lecture 4-4. Inference about Leases Squares Coefficientē

Inference about Lēāst Squarēs Coefficients: A sampling experiment involving \(\bar{a}\) univ̄ariāte rēgrēssion to study the random nature of coēfficient estimatēs

\section*{Lecture Content:}
1. Discuss the sampling experiment and its purpose of studying variability
2. As̄sumptions made in a multivariate linear regression model

Main Topics:
1. The sampling experiment and analysis of coefficient estimates
2. Regression model with "well-behaved" data
3. Variance of least squares coefficient estimates

Topic 1. The sampling experiment and analysis of coefficient estimates
I. Basic Issue: Regression coefficient estimates depend entirely on the \(\left(\underset{i}{ },{\underset{i}{i}}_{\mathbf{y}_{1}}\right.\) ) observations
1. We cālculate the vector of coefficient estimates b using only the (Kxp) \(X\) matrix and dependent variabie \(\underset{\sim}{x}\)
2. If we add or delete observations, or use a different bet of \(N\) observations, then the estimates will most certainiy differ
3. Hence coefficient estimates of the model parameters depend on the "sample" of \(N\) observations
II. Problem: Bow do the estimates of the \(\bar{b}_{\dot{1}}^{\prime}\) 's vary with the chosē \(\overline{\text { säanple }}\)
1. Consider the following example:
a. \(X_{i}=\) number of surgical procedures for patient \(i\)
\(y_{\overline{1}}=\) length of stay (LOS) for patient \(\dot{1} ;\) in days
b. Data from a hospital on \(\mathbf{i}=1 ; 2 ; \ldots ; 2435\) patients
2. Note that patients have between 0 and 6 surgeries, so that we have a natural ciassification into batches
3. We will take smali "samples" from the large data set, fit least squares ifnes; and study how \(a\) and \(b\) vary over the samples
III. Solution: A sampling experiment
1. Number of surgeries and length of stay is more linear in (3) log (y) scale
a. Increase in log(LOS) as NSURG increases
b. Plot shows number ōf pátents with \(j\) surgeriés, \(j=0 ; 1 ; \ldots, 6\).
2. We study the 7 batches of data, looking at box plots of log(LOS) with NSURG fixed
a. Each batch seems symuetric about a modal value
b. Interesting to note that average log(LOS) is less for patients with 1 surgery than for patients with 0 surgeriés
3. Parallel schematic plots show equāl spreads; general increase in log(LOS)
4. Since there are only 39 patients with \(\overline{4}\); \(\overline{5}\); or \(\overline{6}\) surgeriēs; we combine these three batches. This schematic shows linear trend better than earlier plot
5. Number sumaries computed. Note how \(\overline{\mathrm{X}}=\mathrm{M}\) indicating symotry; and how \(\sigma=.75\); reasonably constant
6. Plot of conditional typical values shows trend
7. We select a sample of 2142 patients from the 2435 to use as a sampling base
a. Notē the scattérplot of 2142 patients
b. Slope of LS line is̄ . 157, \(\bar{s} 1 i g h t l y\) léss than . 21 for entire data set
c. Intercèpt is similàr in both regrēssions; 2.1
8. We now drāw 100 samplēs; with varying samplē sizé (z 25) where the percentages of patients with k surgeriēs is same in ēach sample ā in the éntire dāā sēt
a. Stem-ānd-Leaf display of the 100 estimatē of \(\bar{a}\) and \(b\)
1. Noté how the intércepts are s̄métric about \(\approx 2.0\) or 2.1
ii. Slope interceptes appear vèry wēll behaved
b. Numbēr summariēs of the ē̄timāē show 'well-behāednēs"

11. Slopes s̄ymetric about .12, silghtly lēss than the . 157 for the sample base, although \(\sigma=.228\) shows thăt . 12 is not too small.
9. How do the LS ēstimatē compare with rēsistant line estimates?
a. Dàtà have lárge spreãd, so that rēsis̄tant line

b. Intercept ēstimatē have lāger spread than with LS; more outliés
\[
635
\]
XVI.II. 281

> c. Slope estimates also have more spread, although modé .1 .5 is more apparent
> d. Number sumaries show that \(\overline{\text { b }}\) 's have mean of .155 , véry close to the "correct" value
IV. Conclusion: Sampling shows how estimates of regression parameters vary
1. When the observations used in the modè do not include all the observations, i.e. when "sample size" f "population size", estimates will vary around the "true values"
2. Hence, thére is à degree of randomnēss inherent in the éstimates
3. Estimates appear quite well-behaved
4. LS estimatēs not quite as accurate as Resistant Line estimates; although spread is certainly less

Topic 2. Regrēsicion model with "well-behaved" data
I. Basic Issūe: Definition of well-behaved regression data
1. Since Dāta \(=\) Fit + Residual, the definition of weilbehā̄ed rēgression data begins with the residuals
2. Compute Residual \(=\) Data - Fit \(=y_{i}-\hat{y}_{i}\) and examine as a Batch
II. Problem: What is a well-behaved batch of residuals?
1. First of all; the linear model must "fit"; so that \(R^{2}\) is lāge (near 1); and residuals are smali
2. Residuāls should be:
a. Homoscedastic--vartance of résiduals should remain constant as \(X\) increases-easy to envision in 2 dimensions
b. Áwel̄ behaved single batch--symmetric about 0 , with \(95 \%\) between 2 and -2
c. Devoid of ali patterns
\(\therefore\) Let \(\mathrm{c}^{2}=\overline{\mathrm{V}} \mathrm{ariance}\) of Residuais, \(\quad \sigma^{2}\) estimated by
\[
\frac{j}{N-} \sum_{i=1}^{i}\left(y_{i}-y_{i}\right)^{2}
\]
4. : Mie the standard error of the residuals ( \(\sqrt{\sigma^{2}}\) for the 00 yresolons
a. Ne of the \(\bar{\sigma} \overline{\mathrm{s}}=.7 \overline{8} \overline{5}\)
 ro. ghly symuetric about the "correct" value
5. With wē̄l-behaved uñivarıate dā̄a, resistant line estimates should equal LS estimates

637

Topic 3. Variance of least squares coefficient estimates
I. Basic Í sue: Theoretical form of variance of least squares estimates
1. Now that we know that the batch of residuals has variance \(\sigma^{2}\), how do the parameter estimates vary?
2. Let \({ }^{\text {E }}\), be the vector of least squares coefficient estimates
3. \(\bar{b}_{L} \bar{S}\) is e "random" vector, varying about \({ }_{\sim}\), the "true" regression coeffients
4. Var ( \({\underset{\sim}{L S}}\) ) depends on \(\underset{\sim}{x}\) and \(\sigma^{2}\)
II. Problem: Interpretation of Var ( bid
1. Definition:
\[
\operatorname{Var}\left({\underset{\sim}{L S}}^{\mathrm{b}}\right)=\sigma^{2}\left({\underset{\sim}{x}}_{\mathrm{X}}^{\mathrm{X}}\right)^{-1}
\]
2. Diagonal terms of \(\operatorname{Var}\left(\mathrm{b}_{\mathrm{LS}}\right)\) are variances of individual \(b_{i}\)
3. Off diagonal terms, ( \(1, j\) ), are covariances of \(b_{i}\) and \(b_{j}\)
4. Transparency shows output from LS regression of \(\log (\mathrm{Z} O S\) ) on NSURG for entire sampling base
a. Note \(\sigma^{2}\left({\underset{\sim}{x}}^{x}\right)^{-1}\)
b. Various other quantities; \(\mathrm{R}^{2}, ~ \sigma \equiv\) standard error, " \(t\) " will bee discussed in detail in next lecture
6.38

Lēcture 4-4
Transparency Presentation Guide
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Lacture \\
Outline \\
Location
\end{tabular} & Transparency
\(\qquad\) & Transparency Description \\
\hline Beginaing & 1 & Lecture 4-4 Outline \\
\hline Topic 1 & & \\
\hline \[
\begin{gathered}
\text { section ix } \\
1:
\end{gathered}
\] & 2 & r. . . \(\quad\) of Length of Stay vs Number - =el Procedures \\
\hline \[
\begin{gathered}
\text { Section iní } \\
\text { i: }
\end{gathered}
\] & 3 & - -ft or Leont Squares Line \\
\hline 3. & 4 & Scamatic plorf oif Loz Length of Stay \\
\hline 4. & 5 & Sciematic plots of Log Length of Stay, 4, 5; 6 surgeriēn combined \\
\hline 5. & 6 & Number Sumaries of Log Length of Stay \\
\hline 6. & 7 & Piot of conditional typicals \\
\hline 7. & 8 & Scaiterplot of Sample Data \\
\hline 8.a & 9 & Stem-and-Leaf of Regression Coefficients from Least Squares \\
\hline \(\overline{8} \cdot \mathrm{~b}\) & 10 & Number Summaries of Regression Coefficientś, Least Squàrēs \\
\hline 9. & 11 & Stem-and-Lēaf of Regression Coefficients from Resistant Line \\
\hline 9.8 & 12 & Number Summāriēs of Regrēssion Coēffi= cients, Resistant Line \\
\hline \multicolumn{3}{|l|}{Topic 2} \\
\hline 4. & 13 & Standard Errors of the Residuals \\
\hline \multicolumn{3}{|l|}{Topic 3} \\
\hline \multicolumn{3}{|l|}{Section II} \\
\hline & & 639 \\
\hline
\end{tabular}

Lecture 4-4
Inference about Least souorés Coefficients: A sampling experiment to study the random nature of coefficient estimates.

Lecture Content:
a) Discussion of the sampling experiment and the study of variability.
2) Assumptions made in à multivariate linear regression model.

Main Topics:
1.) The sampling experiment and analysis of coefficient estimates.
2) Regression model with "well-behaved data
3.) Variance of least squares coefficient estimates.

Scatierpot of Length of Stay in days va Number of Surgical
Procedures for Hospital Data


Scatterplot end loosest Sguomss line of log hanoth of Shay w. number of Surgical Procedures for Ampital Data

Observing in each "batch" given.



Module it


QMPM

[6]
Modulie, \(\boldsymbol{I I}\)
Number Sunmories for Loglength of Stay. Data crassi
Batches by Munber of Surgical Procedures

697

GMPM

Plot of Conditional Typical Values and Hinges
[7]

Log Length of Stay


Scatterplot of sample of Hospital Data, \(N=2142\)



Staen - and-Leaf Displays of Regression Coefficients
from the 100 Samples. Leost Sgiares
Estimates.
\(u_{\text {nit }}=10^{-2}\)
LO \(1.31171, \quad 1.45958\)

\(u_{n i t}=10^{-\Sigma}\)
\(46,-528729,-.522186\)


652
\(4-4\)

\section*{Number Summaries of Regression Coefficients [0] for 100 Samples, Least Squares}

\begin{tabular}{lllll} 
NOE & 100 & & \(5 D\) & 0.227827 \\
MEAN & 0.117006 & MIDSP & 0.308007 \\
MED & 0.124183 & RANGE & 1.18487 \\
TR & 0.127072 & & \\
MID & 0.122465 & & \\
MIN & -0.528761 & & \\
LH & -0.024043 & & \\
MED & 0.124183 & & \\
UH & 0.283964 & & \\
MAX & 0.656161 & &
\end{tabular}

Stem-and-Leaf Displays of Rogression Coeffieients [11] for 100 Somples. Resistant Line Estimates.
UNIT \(=10^{-\bar{z}}\)



UNIT \(=10^{-2}\)
LO:
\(-0.980829\)


H11 0.98/055 1.05562 209861 1.80644 xvi.II. 296 651 4-4

Regression Coefficients for 100 Samples. Resistant Line Estionates.


HOB 100


GRAM

Standard Error of the Ansiduals, tar anon of the
Stem- and-Leaf Displays


5 Number Summary

For sample of size \(2142, \sigma=.777\)

656

ERIC
vasuation of Coeffrionts
\[
\begin{aligned}
& 0^{2}=.6042 \\
& \sigma \text {-.7773 } \\
& \left(x^{2} \times\right)^{-1}=\left(\begin{array}{ll}
-0001947 & -.0005872 \\
-0005782 & -0006587
\end{array}\right) \\
& \left(x^{6} x\right)=\left(\begin{array}{ll}
2142 & \text { ni17 } \\
1917 & 2235
\end{array}\right) \\
& \sigma^{2}\left(x^{2} x\right)^{-1}= \\
& \left(\begin{array}{ll}
-000601 & -.00326 \\
-.000 \sqrt{6} & .000398
\end{array}\right)
\end{aligned}
\]

Varionce - Covariance Matrix of the Csefficients
\[
\begin{array}{ll}
\bar{a}=2.073 & \sigma_{a}=\sqrt{.000601}=.0245 \\
b=0.157 & \sigma_{0}=\sqrt{6.0398}=.0199 \\
& -.000356
\end{array}
\]
covariance of \(a\) and \(b\)

\section*{QMPM}

\section*{Lecture 4-5 Modei with ieast Squares Estimates in Weil-Behaved Batches}

Modé with Least squares Estimates jn Well-Behaved batches: Evaluating the model

\section*{Lecture Content:}
1. Discuss assumptions of ineax model and the optimality of the estimates
2. Testing how weil the model "fits"

\section*{Main Topice:}
1. Covariances and variances of variables
2. Evaluating the model

\section*{Topic 1. Covariances and Variances of Variables}
I. Basic Issue: How do we measure how "related" a get of variables are
1. Develop "pair-wise" measures of relatinns. There are \(\binom{p}{2}\)
measures for a set of \(p\) variables
2. The measure comparing \(X\) and \(X\) telis sow similar these 2 variables are, independently of all other variables
II. Problem: What is the best measure?

1: Seek a dimensionless quantity-no units
2. Measure should have a maximum and a minimum value to aid us in our assessments
III. Solution-Covariances; Variances; añ Corrèations
1. Covariances, in (units of \(X_{i}\) ) \(x\) (units of f) tell by how mich \(X_{i f k}\) and \(X_{j k}\) simultaneously vary iror their means, for alif \(\quad j k \quad k=1 ; 2, \ldots, \ldots\)
2. Variances; in units of \(x^{2}\), teli by how much the observations of \(X_{i}\) differ from \(\bar{X}_{i}\); in squared deviations
3. Correlations-our desired measure of relationships-are réios of covariarces and variances
IV. Method
1. Definition of Covariances and Var;
\[
\begin{aligned}
& \operatorname{Cov}\left(X_{i} ; X_{j}\right)=\frac{1}{N} \sum_{k=1}^{N}\left(X_{i k}-\bar{X}_{i}\right)\left(X_{j k}-\bar{X}_{j}\right) \\
& \operatorname{Var}\left(X_{i}\right)=\frac{1}{N} \sum_{k=1}^{N}\left(X_{i k}-\bar{X}_{i}\right)^{2}
\end{aligned}
\]
2. The ( \(p x p\) ) matrix of covariances (off \(\bar{d} \dot{\text { qug }}\) ) and variances (diagonal) is called \(\Sigma=\left(\bar{\sigma}_{i j}\right)\), the "Variance-Covariance" matrix
3. Correlations
\[
\begin{gathered}
r_{i j}=\sigma_{i j} / \sqrt{\sigma_{i 1} \sigma_{j j}}=\frac{\sum\left(\bar{x}_{1 j}-\bar{x}_{i j}\right)\left(x_{2 j}-\bar{x}_{2}\right)}{\sqrt{\varepsilon\left(\bar{P}_{1 i}-\bar{x}_{i}\right)^{2}\left(x_{2 i}-\bar{x}_{2}\right)^{2}}} \\
-\quad-1 \leq i_{i j} \leq 1
\end{gathered}
\]
4. \(R\), the mātrix which hās ones along the diagonal and \(r\) àse off-diāgonal élémentes; is called the diagonal matrity.
5. Correiation of -i ō \(1 \Rightarrow\)
\(\bar{X}_{i} \overline{\text { and }} \bar{X}_{j}\) are inearly related
6. Correlation of 0
\(\overline{\mathrm{f}} \overline{\mathrm{X}}_{\mathrm{i}}\) and \(\bar{X}_{j}\) are well-behaved, \(\mathrm{r}_{\mathrm{ij}}=0 \Rightarrow \mathrm{X}_{\bar{i}}\) and \(x_{j}\) are "independent", I.e., unrelated

\section*{Topic 2. Evaluating the Model}
I. Basic İs̄ue: When does least squares produce "good" estimates
1. Remember thāt LS is fust one technfque--there are others-for estimation
2. LS works wēll when the data adhere to gevergi essumpfons
II. Assumptions necessāry for LS
1. Model: \(\hat{\bar{y}}_{1}=\bar{b}_{0}+\bar{b}_{1} \bar{X}_{11}+b_{2} \bar{X}_{21}+\ldots+b_{p} \bar{X}_{p}\)
2. Residuals: \(y_{i}=\overline{\hat{y}}_{\dot{1}}\)
3. Four assumptions:
a. \(y_{i}\) must be ínearly related to the \(n\) independent variables
b. Batch of restduals must be well behaved
c. Residuais must be independent of \(X_{i}\)
d. Variance of batch of residuals is a constant \(0^{2}\) These assumptions must be true
4. If (a)-(d) are true, thon by the Gauss-Markov Theory, LS estimates are optimal in the sense int the quantity \(\left.\overline{y_{1}} y_{i}\right)^{2}\) is minimized i.e., estimatas have minimum variance
5. One implication of these assumptions is \(\bar{s} \overline{t h a} \bar{t} \bar{t} \bar{e}\) coefficients are "well-behaved", i.e,, if we could fit each model \(n\) times, with \(n\) different samples, the batch of \(b_{i}\) values would be well-behaved--unbiased and consistent
 the sampling experiment are
(3)
III. Problem: How do we determine whether these assumptions hold?
1. We have various meāsures at our disposal:
a. \(\mathrm{R}^{\overline{2}}\) multiple corrēation coefficient
b. t-statistics
c. Tisorough examination of resid als
2. We discuss \(\bar{a}\) and \(b\) here, leaving \(c\) until next lecture
IV. Method
1. \(R^{2}=\) square of the multiple correlation coefficient
2. \(R=\) correlation between \(\bar{Y}\) and the iñear combination of X's which maximizes \(R_{;}\)the combination is the regression equation
3. t-statistic-determines whether a variables belongs in the medel

\(\mathrm{b}_{1}\)
4. If \(\left|\bar{t}_{\dot{1}}\right|>3\), variable \(\bar{X}_{\bar{i}} \bar{i} \bar{s}\) imporiant; if \(\bar{t}_{1}\) near \(\overline{0}\), variable \(X_{1}\) an be ignored
5. \(R^{2}\) and \(t\) statistics for the 100 samples
6. Sal regression output

\section*{Lecture 4－5}

Transparency Presentation Guide

Lécture
Outine
Location
Beginniñg

\section*{Topic 2}

Section in
\[
1 .
\]
6.

2

3

4

5
\(\overline{6}\)
6.

7
Regresiticn of Length of Stay on number surgeries

Lecture \(4 / 5\)
Linear Model and Least Snares in WellBehaved batches of data.

Lecture Content:
Assumptions of the linear model and. optimality of the estimates.
2) Testing the "fit" of the model.

Man Tics:
i) Covariances and Variances
2) Evaluating how well the model fits.
\[
\dot{\bar{\sigma}}
\]

Least Squares Linear Model Assumptions
MODEL:
\[
\begin{aligned}
& \hat{y}_{i}=\bar{b}_{0}+\bar{b}_{1} x_{i 1}+b_{2} x_{i 2}+\cdots+b_{n} x_{i n} ; i=1, \overline{2}, \ldots, m \\
& \hat{n}_{i}=\bar{y}_{i}-\hat{y}_{i} \text { residuals }
\end{aligned}
\]
i) Dependent Variable must be linearly related to the \(n\) independent variables.
2) Bätch of residual's must be well behoved.
3) Residuals must be independent.

4; Variance of batch of reside. al: is a instant \(\sigma^{2}\)

IF assumptions \(1-4\) are true, then the Least squares coefficient estimates are optimal.
[3]
Şandardized b; Coeffieients From Sampling Experinent


ERIC
\(t\) statistics
\[
t_{i}=\frac{b_{i}}{\sigma T_{i}}=\frac{\text { coefficient estimates }}{\text { std. err of coefficient estimates }}
\]

A large positive or small negative value of \(t_{i} \bar{x}_{i},(-3)\) indicates that the \(i\) th variable, \({ }_{i} X_{i}\). is important in the regression.

Multiple Correlation Coefficient \(R\)
\[
R^{2}=\frac{\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}=\begin{gathered}
\text { Percent "explained" } \\
\text { by the regression }
\end{gathered}
\]
\(R\) is the correlation between the independent variable \(y\) and a linear combination of \(X\) variables. Which linear combination? That combination which maximizes \(R\) !
\[
R^{2}=\left[\operatorname{Fax}_{b}^{\operatorname{Corr}}\left[y_{0} b_{0}+b_{1} \bar{x}_{1}+\ldots+b_{n} x_{n}\right]\right]^{2}
\]
\(R^{2}\) should be near unity.
[5]
\(R^{2}\) Values for Sampling Experiment UNIT - \(10^{-3}\), values cut


\(n^{2}\) for entire data base \(=\) . 0283
\[
66 \mathrm{~s}
\]
\[
4-5
\]

Least Siuates Regression of Log(los) on Nsurg. Sample of \(214 a\) patients
\[
N O B=2142
\]

NOVAR-2
Multiple R syuared e0.02827 \(\sigma\) (SIR = RMS of Residual) \(=0.757263\)
\[
\begin{aligned}
& \text { Constant Confficient } \frac{2.07346}{0.15394} \\
& \text { Nsuec 0.15934 } \\
& \text { St. Err Coef. } \\
& 0.0345 \\
& 0.01978 \\
& \text { Variance: Covariance Märix̄ } \\
& \left(\begin{array}{rr}
0.000601 & -0.000356 \\
-0.000356 & 0.000395
\end{array}\right)=\sigma^{2}\left(x^{1} x\right)^{-1} \\
& \dagger \text { - statistićs = coet./s E coef. } \\
& \text { Constant }=2.07346 / .02451=84.596 \\
& \text { NunRe = }{ }^{\circ 554} / \text { oigeq } 7.8907 \\
& 670
\end{aligned}
\]

Lecture 4-6. Evaiusting the Model

Evaluating the Model: A thorough examination of the Residuals to determine how well the model fits

\section*{Lecture Content:}
1. Analysis of Residuals
2. Analysis of Length of Stay of patients in a hospital

\section*{Main Topics:}
1. Looking for patterns in the residuals via scatterplots
2. Applying our inferential procedures to an example
(Thērē are no transparencies.)

\section*{GMPM}

\section*{Topic 1. Abalysis of Residuals}
I. Bacic Issue: How can we use the residuals as a batch to find Violations of aseumptions
1. We hāve measures for overall assessment
a. \(\mathbf{R}^{2}\) : Coefficient of Determination
1. Function of the Squared Residuals
11. Tells what fraction of the total variation is "explained" by the fitted line

111: Comprehensive measure of fit
b. t statistics: Retio of estimate to its standard error
1. Indrect function of Residuals depends on \(\sigma^{2}=\) Var Residuals
11. Tells whether a given regression coefficient is non-zero
111. If \(-3<t<3\), coefficient is essentialiy 0 , i.e., the variabie does not nelp to "expiain" y
iv. Note: to incease \(t\) statistics, one usually decreases S.E, of \(b\)
S.E. \(\left(b_{i}\right)=\left(\sigma^{2}\left(\underline{x}^{t}\right)^{-1}{ }_{11}\right)^{1 / 2} ;(1,1)\) element
A. We can either decrease \(\sigma^{2}\)
B. Or increase \(\left(X^{t} \bar{X}\right) \rightarrow\) spread \(X^{\prime}\) s out over wider range
2. These measures are "gross" in that an assessment of violations of assumptions is not allwed
3. We need to examine residuals further to determine whether they:
a. Are well behaved
b. Are homoscedastic
c. Are independent
II. Problem: How should we examine them
1. We can only conclude that either
a. The LS assumptions appear to be violated in some apecified way
B. The ls assumptions do not appear to be violated
2. Note that b. does not mean the assumptions are correct-It means that given the data that we have seen, we have no reason to conclude that they are violated
3. We examine the residuals graphicaily
4. Scatterpiots are easy to make; and quite revealing
III. Solucion: Principai ways of pioting residuals
1. Stem-zndileaf
2. In time eequence (if rélevant)
3. Against the fitted (conditional typicai) values y
4. Against the independent variabies
5. Any other sensible ways

\section*{IV. Methods}
1. Stem-and-Leaf
a. Stem-andeaf the residuals \(\bar{r}_{i}=\bar{y}_{i}=\hat{\bar{y}}_{\dot{I}}\) as a
single batch
b. Display should resemble a well-behaved batch
c. If not, the weil-behavedness essumption is viclated, and one bhould deternine exactly how by
1. Looking at \(\overline{\mathrm{X}}\) and \(\bar{\sigma}{ }^{2}\)
ii. Examining outiiers carefully
2. Time sequence plots
a. Íf data are rime series, íe e. gachered over time, we should plot the residuais ( \(y\) ) vs corresponding value on the time scale ( X )
\[
673
\]
\[
\text { XVI.II. } 315
\]
b. There are 5 characteristic shapes these plots: Shape 1. Random--Desired pattern


Shape 5. Trignometric-Sine patterns

c. These shapes imply the following
1. Shape 2. Heteroscedasticity Use weighted LS (next lecture)
11. Shape 3. Linear time term needed in model
111. Shape 4. Quadratic time term and linear time term needed
iv. Shape 5. Tough luck-Seasonailities Try indicator variables Residuals are not independent
3. Plote against the fitted values
a. Shape 2. Heteroscedasticity

Transform y
b. Shape 3. Error in Analybis Modè Incorrect-did you leave out \(\mathrm{b}_{0}\) ?
\[
634
\]

\section*{c. Shape 4: Móel Inaccurate Need additinnal (square or interaction)
terms}
4. Shape 5. ? Residuale not independent
4. Plots aḡins̄t the Independent Variables

1 per \(X_{1}\)
a. Shape 2. Heteroscedasticity

Transform y or \(\bar{X}_{\mathbf{i}}\)
b. Shape 3. Probable error in calculations

Liñar effect not removed
c. Shape 4. Need extra higher order terms in \(\bar{X}_{1}\)
d. Shape 5. ? Residuals not independent
5. Other residual plot̄
a. If residuals come from different processes (i-10: Machine 1) (11-20: Machine 2) examine as separate bātches
b. If considerin̄ a new independent variable, plot it
against the residuais

QAPM
Topic 2. Applying our inferential procedures to an example
I. Example: "The cost and Length of hospital stay" Lave \(\dot{\delta}\) Leinhardt

Examine Tables 2, 3, 4, 5

\section*{Lecture 4-7 Probiems with Least Squares Estimation}

Problems with Least Squares Estimation: Effect of invalidated assumptions on the coefficient estimates

\section*{Lecture Content:}
1. Small number of degrees of freedom
2. Robust and LAR regression
3. Ridge regression

\section*{Main Topice:}
1. Overfitting-more variables than observations
2. Non-well behaved batches of residuals
3. Colinear independent variables
(There are no transparencies)
Note: : This lecture covers advanced topics and should be considered optional.

677

\section*{QRPM}

Topic 1. Overfitting-more variables than observations
I. Banic Iasue: Effecte on lestimates when \(N\) is omali relative to p
1. Define "degrees of freedom" as \(\mathrm{N}-\mathrm{p}\) Desire \(N-p\) >> 0
2. Suppose \(\overline{\mathbf{N}}-\overline{\mathbf{p}}\). \(<\mathbf{0}\)
3. When \(\begin{gathered}\text { p } \\ \text { pe have a "perfect fit": regression line }\end{gathered}\) completely describes the rēlationship between \(X\) and \(\bar{\Sigma}\), residuals are \(0, \mathrm{R}^{2}=1\).
4. If \(\mathrm{N}<\overline{\mathrm{P}}\), then we in trouble. We wili not be able to estimate all the coefficients; onily N: functions of them
5. Statisticai methodology for handing this situation is underdeveloped, and quite unsatisfactory
II. Solutions
1. We can always deleté variables untín is lāger than \(\bar{p}\)
2. Or, we can forget ābut fitting multipléregression models, and examine each of the \(\bar{p}\) variables as a single batch
3. We then try to combine these single, separate analyses to form some impression
4. Or we can combine variables, for instance by forming interactions, so that \(p\) is reduced

678

Topic 2. Non-well behaved batches of residuals
I. Bagic Issue: How do departures from "well-hehavedress" affect LS estimates
1. Most comon problem in least squares regression is outlying values; jkewass is another frequently observed departure from weil-behavedness
2. Heteroscedastic residuals best treated via transformation or Weighted Least Squares (see below)
3. Lack of independence in the errors also bebt treated with Weighted Leāst Squares
4. Outliers? We also use a "łancy" version of weighted least squares
II. Problem: How do we use weignted least equares to improve LS estimates?
1. We assign a weight to each observation that tells how important thàt observation is
2. Ordinary least Squares assigns weights of unity to every observation; hence large outifers receive the sāme weight as observations which have smail residuals
3. We would like to assign smaller weights to these larger outicers, so thàt they become less important
4. We generate a matrix \(W\), that is diagonā, with weights iying between 0 and 1: Wis (NXN), the ( 1,1 ) th diagona 1 element is the weight that we assign the ith residual
a. If ith rēsiaual is smail; win \(_{\text {in }}\) near \(\overline{1}\) : full weight
b. If ith residual is quite large in absolute value, \(w_{i i}\) near 0 : little welght
5. How do we determine these weights?
a. If we know what they should be, we have no problem: Merely form \(W\), perform the WhS calculations given below; and everything wili be fine
b. If we have no idea, we use "Robust Regression" techniques, or Léast Absolute Residual Regression
\[
679
\]
III. Solutions
1. Robust Regression
a. We find the matrix \(\hat{\text { in }}\) an iterative procedure by minimizing
\(\sum_{i=1}^{\bar{N}} p\left(\frac{y_{i}-\bar{x} \beta}{S}\right)\)
i. \({\underset{X}{-1}}^{=1 t h}\) row of \(\underline{X}\)
ii. \(\bar{S}\) is an estimate of \(\bar{\sigma}\)
iií. \({ }^{\circ}\) " is our weighting function \({ }^{\circ} \times\) " We describe our functions in terms of \(\psi\), the derivative of \(p\).
Iv. Our weights \(w_{f}\) are \(\psi(\bar{z}) / \bar{z}\). These are the values we plate on the diagonal in \(W\)
b. Examples of \(\psi(\cdot)\)
1. Least Squares

note how large residuale are not weighted downward
\[
w_{i i}=\frac{\Psi\left(\bar{r}_{i}\right)}{r_{i}}, \quad r_{i}=\frac{i t h}{{ }^{\text {initial }}} \text { fit }
\]

weights of unity
650
XVI.II. 322
a. We find the matrix \(W\) in an iterative proceaure by minimizing
\[
\underset{i=1}{N} \quad \rho\left(\frac{y_{i}-\bar{x} \beta}{s}\right)
\]
1. \({\underset{i}{-}}=\) ith row of \(\underset{\sim}{x}\)
if. \(S\) is an estimate of \(\bar{\sigma}\)
1it. \(\rho^{\prime}\) is our weighting function \(p^{*}\) -
We describe our functions in terms of \(\psi\), the derivative of \(p\).
iv. Our weights wore \(\bar{\phi}(\mathrm{z}) / \overline{\mathrm{Z}}\). These are the values we place on the diagonal in W
b. Examples of \(\psi(\cdot)\)
1. Least Squares

note how large residuals are not weighted downward
\[
w_{i i}=\frac{\psi\left(r_{i}\right)}{r_{i}}, \quad r_{i}=\frac{i t h ~ r e s i d u a i ~ f r o m ~}{\text { Bome }} \text { initial" fit }
\]

weights of unity
680
XVI.II. 322
in: Sine



Note how large residuals get weighted downward to 0 .
ixif. Other functions include Huber
Huber

\(\bar{c}\). We \(\overline{\mathrm{f}} \mathrm{n} \overline{\mathrm{n}} \mathrm{w}_{\mathrm{if}}\) and make the W matrix and compute
\[
\underset{\sim}{B}=\left({\underset{\sim}{X}}_{W}^{W}\right)^{-1} \underset{\sim}{X} \underset{\sim}{W}
\]
d. We then find the residuals froll this fit, weight them again; and recompute \(B\). Stop when coefficients converge
2. Least Absolute Residual Regression
\[
\begin{aligned}
\psi(z) & =\operatorname{sign}(z) . \\
w & =|z|^{-\overline{1}}
\end{aligned}
\]

651


LAR minimizes
\[
\sum_{i=1}^{N}\left|y_{i}-X_{i} B\right|
\]
absolute residuals (iike finding medians)
Also an iterative procedure
3. Weighted Least Squares
a. If we can determine the covariance structure of the residuals, Epxp , we let \(W=\Sigma^{-1}\). This will get rid of any lack of independence in the residuals or any heteroscedastic tendencies
b. We then estimate
\[
\begin{aligned}
& \underline{E}_{\text {WLS }}=\left(X_{\sim}^{W X}\right)^{-1} \underset{\sim}{X} \\
& \operatorname{Var}\left(\mathrm{~B}_{\mathrm{WLS}}\right)=\sigma^{2}\left(\mathrm{X}_{\sim}^{\mathrm{X}} \mathrm{WX}^{-1}\right.
\end{aligned}
\]

This is not an iterative procedure, since we assume £ known

Topic 3. Collineàr Independent Variābles
I. Besic Iseue: What effect do nonindependent 'independent variables" have on is estimates
1. We should always examine \(\underline{R}\), the correlation matrix of the \(\mathrm{X}^{1} \mathrm{~B}\)
2. If any offodiagonal element of \(R\) is near -1 or 1 then we have problems
3. Wa can Femedy this sitution-cailad miticolinnearity=oniy by deleting one of the 2 offending variables
4. If the situation is more complicated-many correlations \(\geqslant .5\) or \(<=.5\), and we cannot delete the nécessary variablēs then we can use "Ridge Regression"
5. When there are many related \(X\) vectors, \(X X X\) difficuit \(\overline{\text { tio }}\) Invert
II. Solution: Ridge Regression
1. Ridge regression operates directiy on \(\mathbb{X} \mathcal{X}\), making it more iātāble" and hence invertable
2. Mode1: : \(\bar{B}=(\underset{\sim}{X}+\bar{k} \bar{I})^{1} \mathbb{X}_{-1}\)
3. K iles between 0 and \(\overline{1}\) and is added to the diagonal of XX to increase its stability

653
1. In the GM-DAP \(11 b\) raity, you will find an archive named "OMAHA-Y70". This archive contains 9 variables, collected on each of the 96 census tracts in the city of Ouaha; Nebraska in the 1970 census.
\(\overline{L e t} \bar{z} \overline{\mathrm{M} F \mathrm{C}}=\mathrm{Median}\) income of families and unrelated individuajo
. \(\overline{\mathrm{X}}=\mathrm{POP}=\overline{\text { Population }} \mathbf{o f}\) each tract
\(\mathbf{X}_{2}=\) NWHITE- \(\overline{p C T}=\) Percent of population of each tract that is noowhite
\(\bar{X}_{3}=\) YEARS-ED-C = Average number years of éducation per individual
\(\bar{X}_{\boldsymbol{4}}=\) PCT-GT65Y = Percent of population greatex than 65 yeares of age
(a) Plot each \(\bar{x}\) against \(\bar{y}\). Coument on these 4 plots. Are the point ciouats linear, or do any of the independent variabieg require transformation? If so, transform and plot again.
(b) Fit àmutiple regression line to these data. Does the model make sense? Coument with respect to:
(i) Units of analysis of the X's
(ix) "Cāisality" and the underlying theory of the situation being modeled.
(c) Cālculate and examine the residuals as a singie batch of data. What do they tell you about your fitted inne?
(d) Cālculàiè and examine \(\mathrm{R}^{2}\). coment.
(e) Using the linear model with any additional information gathered in (b), (c), and (d); comment on the poifcy implications of the model relating median family income to the eeveral \(X\) variables.
(f) Could we have fit another line using a subset of these 4 Independent variables and still have obtained a good fit? if so, what Eubset?
(8) If you could have any set of \(X\) variables (not necessarily those included in the 9 in DAP) to predict median family income, which variables would you choose and why?
2. Stored in CMU-DAP is an archive named COBBDOUGiAS with 4 variabies; ō̄e observation per state.
i) VĀADD
ii) CAPITAL
iii) LABOR
iv) ESTABE

These data are economic data used by many economists to "predict" the total vaiue added (in doliars) to a subset of the economy via the Cobb Douglas production function model:
\[
\left(\frac{\bar{V}}{\mathrm{~N}}\right)^{\bar{A}}\left(\frac{\mathrm{~L}}{\overline{\mathrm{~N}}}\right)^{\bar{\alpha}}\left\langle\frac{\overline{\mathrm{N}}}{\overline{\mathrm{~N}}}\right)^{\beta}
\]
where \(V=\) Value added (míiíons of \(\$\) )
\(L\) ELabor (millions of man-hours)
\(\mathrm{K}=\) Capital Services Flow (millions of \(\$\) )
\(\mathbb{N}=\) Number of Establishments
A, \(\boldsymbol{\alpha}, \boldsymbol{B} \equiv\) Parameters
(a) Reexpress this model in the usual multiple regression form: plot each (transformed) independent variable against the (transformed)
- dependent variable. Coment on these plots.
(b) Calculate the LS regression (fit a multiple regression to the transformed data): Comment on this model with respect to:
(i) causality
(ii) possible dependence among the independent variabies:
(c) Calculate and plot the residuals. What do they tell you about your fitted line?
(d) Cācūlate \(\mathbf{R}^{2}\). Whàt does this tēll you about your fitted line?
(e) What āre the ē̄asticitíes of value addē with respect to Laborl éstablishment, and Capitā Sérvicēsē̄tābishment, and what do they mean?
(f) Based on this model, should the new (incoming) administration concentrate more on decreasing unemployment (i.e. increasing \(L\) ), or pumping money into the economy (i.e. increasing K )? (or,

 variables; onc oisseryation per state:
\(\therefore\) Registered autós; busēes, and trucks in 1973.
"VEHICLES"
ii) State gasoltré tax per gallon, in cents, in 1973.
"CĀSTAX"
1ii) Motor Fuē consumption, in thousands of gallons; in 1973. "CONSUMPTION"
iv) Population, 1970 census.
"POP"
v) Populātion density, 1970 census, land area only:
"POPDENS"
vi) Pèr capità incomé, in 1973.
"PCINCOME"
The dāta show motor fuel consumption in 1973 along with 5 other, pos̄sibly rēāted, variables.
(a) Plot each variable against fuel consumption: Comment on these plotes. Do all of these variables appear related to fuel consumption?
(b) Cāculate the lis regression (i.e. fit a multiple regression to the dāta). Does the model make sense? Comment with rēspēct to
(i) causality and the underiying theory of the situation being modeled
(ii) possible dependence among any of the "independent" variables
(c) Calculate and plot the residuals. What do they tell you about your fitted ine?
(d) Calculate \(\mathrm{R}^{2}\). Whát does this tell you about your fitted line?
(e) From your discussion in (b), decide upon the two "independent" variables which you feei yield the most "reasonable" model from a causaítey dependence point of view. Repeat parts (b), (c), and (d) for this "reduced" model. Compare these results to those found for the "complete" model and discuss.
(f) Does it bother you to have some data from 1970 and some from 1973? How do you think this affects the "validity" (such as it is) ōf the models ("complete" and "reduced")?
(g) if you could have any other "independent" variablés \(\bar{s}\) ) you désire to use to "predict" fuel consumption, which one ( \(\bar{s}\) ) would you add? Which of the 5 provided would you rētāin? Write your model (but do not attempt to calculate any párameteras).
4. Many people dream of "beating the stock market" by being abie to predict accurately its behavior (and hence being able to buy iow and sell high).

Coen, Gama, and Kandall proposed the following model to predict the London Stock market:
\[
Y_{t}=\beta_{0}+\beta_{1} t+\beta_{2} \bar{X}_{1, t-\overline{6}}+\bar{\beta}_{\overline{3}} \bar{X}_{2, t-7}
\]
where \(t\) (time (in quarters; from 1952/3 to 1967/4; \(\mathbf{t}=1\) for 1952/3, etc.)
\(\bar{Y}_{\bar{t}}=\) Financial Times ordinary share index at time \(t\)
\(X_{i t}=\) United Kingdom car production at time \(t\)
\(\bar{X}_{2 t}=\) Einancial Times commodity index at time t
Note that two of the "indenendent" variables are lagged, that is, the values àt some previous time are used to predict the next value of \(Y\). (The data are stored however as \(\bar{Y}_{\mathbf{t}} ; \bar{X}_{1, t-6}\); and \(\bar{X}_{2, t-7}\) ).
The data are stored in DAP onder the archive STCKMKT, with variable names

SHAREIND
CARPROD-LAG6
COMMIND-LAG7
(a) Plot each "independent" variabie against \(Y\). Coument on these plots.
(b) Calculate the fo regression (i.e., fit a multiple regression inne to the data). Does the model make sense? (Comment with respect to:
(i) Causaifty
(if) Possibie dependence among any of the "independent varıables")
(c) Caiculate and piot the residuals. What do they tell you about your fitted ińne?
(d) Caiculate \(\mathrm{R}^{2}\). What does this tell you about your fitted line?
(e) Based upon your answers to (b), (c), and (d) above, would you be wiling to use this model to "play the market"? Why or why not?

\author{
Homework Unit 4 \\ Solutions
}

\section*{1. Ouha Data}
(a) MFU VE: POP is plotted in figure A. An approximately linear pattern is discernable (note the line).
gifu ve. NWitte-PCT is plotited in Figure \(\bar{B}\). Transformation by \(\log\) or negative reciprocals is clearly required.
MFU vs. the negative reciprocals of NWHITE-PCT is plotted in Figure \(C\). The trend is approximately linear (note line). A plot of MIFU Vs. LOG of NWHTE!-PCT demonstrates iess linearity. (Plot not shown.) MFU ve. YEARS-ED-C is plotted in Figure D. The pattern is roughly inear (note the iine).
MFU V8. PCT-GT65Y is piotted in Figure E. Again, transformation by 108 or negative reciprocals seems pecessary.
MFU VE. LOG of PCT-GT65Y is plotted in Figure F. A roughly Incar pattern is discernable (note the iine). A plot of Mru \(\nabla\). the negative reciprocals of PCT-GT65̄ \(\overline{\text { sh}}\) provement over the LOG transformation; Bo we will stick with the LOG.
A common and useful transformation ior proportions (\% divided by 100) is the arcsin of the squareroot of the data. plots using this transformation of NWHITE-PCT and PCT-GT65Y show iftite noticeable improvement over the above negative rectprocal and 108 transformations. Because the arcinin of the equareroot transformation is difficuit to interpret; oniy a cubstantial tmprovement in linearity varrants its use.
(b) The rutc outpat for the transformed data is in Figure \(\bar{G}\). Note that in both cases the coefficient of years of education 1s large and positive (education seems to increase income), whereft the coefficients for percent nonwhite and percent over 65 are large and negative, although different in each case-as they should be since we transformed these two variableá. The popilation effect seems negilgible.

A unit analyis is not really appropriate to this problem. Uailike the simple addition of international currencies (in which all mist be converted to comon units), in this problem we are attemping to "predict" or "measure" median income (dollars) by averal variables weasured in differing units ( people par tract, nonwitelion people in tract years of ducation, and people over 65/100 people in tract).
\[
\text { XVI.II. } 330
\]

Dependence among the "independenc" variablees ghould be investigated further. . For examplé:
- \% of people older than 65 may be correlated with years of education; due to
- current adult education trends
- the fact that most of the elderly are women and higher education of women was (allegediy) more prominent in the 1930's.
- older people have had more years in which to be educated:
- Z nonwhite may be highly (negatively) correlated with years of education
- If one believes nonwhite mortality rates to be higher than thōe for whites; \% older than 65 may be highiy negatively correlated with \(\%\) nomwhite.

Causality is another question. It does make a certain amount of sense to suggest that changes in the age, race, and education levels of the population "cause" changes in the median income level. We certainly do not expect population to be causal.
(c) A stem-and-iēaf dispiay and a boxplot of the residuals are shown in Pigure \(\mathrm{H}_{\mathrm{i}}\). The residuals appear well-behaved-symetríc about median 0; small; and with few outliers.
(d) \(\mathrm{R}^{-2}\) for the transformed data \(1 \bar{s} \mathbf{- 7 8 6 3}\) (Figure G). The model fits rather weil, from an \(\bar{R}^{2}\) point of view.
(e) Median income appeares to be highly positively influenced by years of education, and negatively influenced by both \% nonwhite and \% over 65. This suggēts thāt the CAUSES for lower nonwhite and elderly incomes should bé investigated in more detail, and policies to benefit those groups (minority education, training programs, more efficient use of elderiy resources, etc.) should be examined. Béfore any such policy is adopted, however, all of its implications should be thoroughly studied.
(f) Since population appears not to \(\bar{g} r e a t l y ~ \bar{a} f \bar{f} \bar{c} t\) the model, this. \(X\) variāble might be dropped. (If the resulting model is very different, however, this move must be reconsidered.)
(g) Some poasibilitice might be
- property tax rate (if this varies by tract)
- \(\%\) of tract zoned for apartments (this however could be double-edged in the case of iuxury apartments)
- \# P population in professional fields (i.e. lawyers, doctorsí atc.)
- population deñity (usually inversely related to median income)
of course, there are many, many, other possibilities.







\section*{Figer \(g\)}

MREG MFU US POP INMATTE YEARS!-EDI-C LGT65Y SAUERES RES2
\begin{tabular}{rrr} 
RESPONSE & MEAN & STD, DEEO \\
MFU & 8244,7266 & 3972,7734
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Carrieri & CONSTANT & & & & \\
\hline COEFFICIENT & Constant & - POF & INWHITE & YEARS EET-C & 6 CT 5 FS \\
\hline STET COEF: & -4036.4160 & \(-0,2932\)
0.1068 & \[
\begin{array}{r}
-216 B_{0} 5540 \\
670.1370
\end{array}
\] & 1255.4548 & \[
-4721,1680
\] \\
\hline MEAN & & 4056676145 & -0,6025 & 11.8695 & 0.5757 \\
\hline STD. DEV: & & 2415,7300 & 0,3430 & 2.1032 & 0.3179 \\
\hline
\end{tabular}
MGLTIPLE R SQUARED 0,7963

ANALYSIS OF VARIANCE TABLE
\begin{tabular}{|c|c|c|c|}
\hline \(\therefore\) & SS & 日F MS & RMS \\
\hline FIT & 1.1790EFO9 &  & 17167:9414 \\
\hline RESIDUAL & \(3.2043 E+08\) & \(913.5212 \mathrm{t}+06\) & 1876.4761 \\
\hline total & 1.4994E+09 & 95 : & \\
\hline & F & F PROR. & \\
\hline FIT & 83.7048 & 1.0000 & \\
\hline
\end{tabular}

\section*{PIDRER II}

Sten Rest
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} \\
\hline \multirow[t]{2}{*}{UNIt :} & \multicolumn{3}{|l|}{100.0000} & \\
\hline & 101 & -5920.7266 & -4233, 1609 & \(-371 \pm\), 3889 \\
\hline 5 & -9 1 & & & \\
\hline 8 & -2il & & & \\
\hline 13 & -21 & 4332 & & \\
\hline \(\overline{19}\) & -1, & 96755 & & \\
\hline 2 & -1 1 & 410 .-.- & & \\
\hline 30 & -0, 1 & 998217355 & & \\
\hline 43 & & 143332211100 & & \\
\hline (16) & & 000111233334 & & \\
\hline 37 & & 556667788888 & & \\
\hline 20 & 11 & 000012233 & & \\
\hline 11 & 1.1 & 5560 & & \\
\hline 1 & 21 & & & \\
\hline 5 & 2.1 & & & \\
\hline 4 & 31 & & & \\
\hline & Hi ! & 4632,914! & 9673,5938 & \\
\hline
\end{tabular}

\section*{COXPTOT RES2 YMREE}

2. Cobbdouglas Problem
(a) We have \(\left(\frac{V}{N}\right)=A\left(\frac{L}{N}\right)^{\alpha}\left(\frac{R}{N}\right)^{B}\)
taking natural \(\operatorname{logs}: \ln \left(\frac{V}{N}\right)=\ln \left[A\left(\frac{L}{N}\right)\left(\frac{\alpha}{N}\right)\right]\)
\[
\begin{aligned}
& =\ln A+\ln \left(\frac{\operatorname{L}}{N}\right)^{\alpha}+\ln \left(\frac{K_{N}}{N}\right)^{\beta} \\
& =\ln A+\alpha \ln \left(\frac{\bar{N}}{N}\right) \mp \ln \left(\frac{\bar{K}_{N}}{N}\right)
\end{aligned}
\]
the usual multiple regression form.
(We prefer natural log four theoretical reasons. The analysis could also have been done using base 10 logs.)
plots of \(\mathrm{v}^{\star}\) vs \(\mathrm{L}^{\star}\) and \(\bar{v}^{\bar{\star}} \mathrm{vB}, \mathrm{K}^{\bar{\star}}\) are shown in Figures A and B . Both plots are remarkably in near for real data. (But note that since we are dealing with a model based on a specific and well-definé theoretical model we would not perform any transformations on \(\mathbf{v}^{*}\); \(\dot{\Sigma}^{\star}\); \(\overline{\text { or }} \bar{K}^{\star}\).
(b) The MREG output is shown in Figure C. We are "predicting" or "modeling" value added (per establishment) in dollars by manhours (labor) per establishment and capital flow (dollars) per establishment. Note that all variables are measured in units PER ESTABLISHMENT. The underlying economic theory considers labor and capital services flow as causing value added; and not dependent on each other (although one certainly tends to increase both in order to increase value added) .
(c) A stem-and-leaf plot of the residuals is shown in Figure \(D\). Except for the one HI value, they appear fairly well behaved: The reścduais are then plot ted agānīt each independent variabié against \(R^{*}\) in Figure \(E\) and \(L^{*}\) in Figure \(F\) : Both plots appear "random".
(d) From the MREG output; \(R^{2}=-9597\), hence our model "explains" the data very well.
(e) The ciasticity of value added with respect to iaborjestabiish= ment is a .9276. The elasticity of value added with respect to capital/estabifshment is \(B=.2788\).

Recall from Tufter page 114 that the elasticity of \(Y\) with respect to \(X\) measures the percentage change in \(Y\) with respect to the percentage change in \(x\). Hence, if labor/estabinghent

1s doubled (1.e. \(100 \%\) increase ). yalue added increases by 93\%. Stullāiy, if capital flow is doubled, value added increases by 28\%.
(f) While Lūborlestablishment appears to provide the larger proporilonal increase in value added (since \(\alpha\) < \(B\) ), the key to this question is the unknown costs. Given a fixed amount of resources, what is the unit cost (in common units) for a given proportional change in labor/establishment compared to the unit cost for the same proportional change in capitalf establishment.

For example, if each \(\bar{z}\) change in capitalfestab costs \(\$ X_{\text {, }}\) and each \(\%\) change in labor/est. costs \(\$ Y=\$ 2 x_{3}\) then for approxfmately the same amount of resources we could (approximate) double value added/establish by either quadrupling capital services/estab or doubling labor/estab.; or by a combination of increased labor and capital flow.

Hence the optimal policy is_not obvious; depending heavily upon these unknown costs. Research is required to determine these costs.



Figure C


\section*{MULTIPLE R SQUAREI}
0.9597

ĀNALTSIS OF variance táble
\begin{tabular}{|c|c|c|c|c|}
\hline & 55 & DF & 13 & Risis \\
\hline FIT & 18.0 ¢81 & 2 & 9.3140 & 3.0517 \\
\hline RESILIUAL & 0.7619 & 22 & 0.0355 & 0.1885 \\
\hline total & 19.4100 & 24 & & \\
\hline
\end{tabular}

FIGURE D STEM RES3

VARIARLE RES3 \%


pieqre E


\section*{3. Gas Problem}

In this problem the first thing we must do is consider the units and magnitudes of the data we are working with. CONSUMPTION, VEHICLES; and POP are each in units of 1 with magnitudes of 6 or 7. PCINCOME is in units of i with a magnitude of 3 . GASTAX and POPDENS are in units of 1 with magnitudes of 0 and 1 , respectively. The very large differences in these magnitudes will be reflected in large differences in the magnitudes of the variances of the vāriables: We will aiso be faced with both very large and very small coefficients in the regression equation. To avoid these scaling problems, we need to equalize the magnitudes by increasing the units of those variables with magnitudes greater than 0 or 1. (There may also be situations in which units should be decreased to achieve equality of magnitudes.) The appropriate DAP commands are:
```

LET CONSUMP = CONSUMPTION/1000000
LET VEHIC = VEHICLESな1000000
LET P = POP/1000000
LET PCI = PCINCOME/1000

```
(NOTE: The variable names on the left hand sides of the equations can be any name of your choice:)

The resulting variables CONSUMP, VEHIC, and \(P\) are in units of 1 million with magnitudes of 0 and 1. PCI is in units of 1 thousand with magnitude 0:
(a) A plot of CONSUMP vs: VEHIC is shown in Figure \(A\) : The data look remarkably iñear:

A plō ō CoNSuMP vs. GASTAX īs shown in Figure B. The pattern (íf any) appears lineār.

A piot of CONSUMP vs. Pis shown in Figure C The data appear reasonabíy ińnear.
\(\bar{A}\) piot of CONSUMP vs. POPDENS is shown in Figure \(D\). While a transformation appears to be in order, none seems to improve the pātern. LOG; SQRT, and Negative Reciprocal were tried with no noticeable improvement.
 suggests some linearity and no transformation seems applicable. The cone shaped spread is of some concern, but a log transformation of CONSUMP does not improve the piot much. A transformation of the dependent variable would also necessitate transformations of the independent variables which exhibit in in the one plot is not worth the sacrifice of simplicity of the model.

Examining thēe plots, VEHIC and \(P\) appear most; and GASTAX and POPDENS least, relāted to fuel consumption:
(b) The MREG output for CONSUMP vs. each of the five X variables is shown in Figure \(F\).

While the model "makes sense" in that we are attempting to model or predict fuel consumption by five measurable qualitatively related \(X\) variables; it is a good example of one in which we have too many unnecessary "independent" variables; resulting in much complexity with little or no offsetting improvement in accuracy (as we shail see in (e) below)

First, we might expect veric to be related to p. Certainiy we expect more vehicles when there are more people. In cities, however, we might expect considerably fewer vehicles (many city dwellers do not own cars, aithough the number of cabs and buses would be larger). In suburban ō rurai āeās, we might expect a larger number of vehicles for that population. The number of vehicies per person is not constant across geographic area, although some relationship bétween these two variables obviously exists.

Economic theory tells us that GASTAX shouid not have a great effect on CONSUMP. Our plots in part (a) reinforce this. We expect people to continue to utilize the available mades of transportation in order to comute to and from work; regardlē̄s of the marginal differences in the price of gasoline due to taxes (as opposed to dramatic price increases caused by other factors).

PCI should probably have a "threshold" effect on CONSUMP. When median income is below some threshold value; people cannot afford a private car and must rely on pubifc transportation. Above this threshold, CONSUMP would then rise to some limiting value; after which increases in income do not have any effect.

POPDENS serves as a sort of index of urbanization. As discussed above, we expect fewer autos per capita (but more buses, cabs, and possibly truck traffic) in highly urban regions; while we expect the reverse in rural areas.
(c) stem-and-leaf and boxplot of the residuals is shown in Figure \(G\). The plots should make us suspicious of our model, since the residuals are not particularly well behaved. Note the large number of HI values; and the overall location of the batch (i.e. nonzero median). A plot of the residuals vs ieach. independent variable would also be helpful, perhaps indicating a hidden relationship (éag. consumption vs. à quadratic in POPDENS). The residuals are aif small, however, relative to the Eize of the original CONSUMP units.
(d) \(\mathrm{R}^{2}\) for this model is 9875 (Figure \(F\). This indicates that the model "explains" the data very well. (But the answer in (c) above should caution us against evaluating the adequa\(\overline{c y}\) of a modei soléy on its \(\mathrm{R}^{2}\) value).
(e) From our discussion in (b) and the plots in (a), we know that one of the two must be VEHIC. Since we expect \(P\) to be functionaliy related to VERIC, PCI is the bēst choice for a becond variable, as is indicated by the \(t\) statistices.

The mReg output fō this model is shown in Figure \(H\). Note that the coefficients for these two variablē àre almost exactiy the same as those in the complete model (Figure \(F\) ).
 in Figure 1 . There is some improvement (fewer HI valuess) over the fuil model, but the plots are similarly suspicious.
\(\bar{R}^{2}\) for this (reduced) model is 9864 , almost the same as that for the "complete" model.

Now, note that in the reduced model:
(i) The coefficients of the remaning variables are virtually identical to their respective coefficients in the "complete" model.
(ii) The residual patterns are similar to those of the "complete" model.
(iii) The \(\mathrm{R}^{2}\) value \(\overline{\mathrm{I}} \mathrm{e}\) esentially the same as that of the "complete" model.

These are three very strong indications that the three independent vartables dropped from the "complete" model were in fact unnecessary:
(f) There is realiy no reason even to consider using the "complete" modei, since the reduced model does just as "weli" (e above). Note that in the reduced model all data are from 1973.

For poícy, decision making, or detailed study purposēs, however, all data should be from the same time frame.
(g) One possíbilifty is to use Autos, . BUSES, and TRUCKS instead of vehicles.

Price per galion at the pump (PPGAL) might be a good
predictor; since we expect radically higher prices to discourage lēīure and "unnecessā̄y" driving.

Kiles of highway (MILES! - ROAD) might be used as another indication of mobility in each stāe.

Indicator variables for minimum driving ages (iND:-AGE) and for madatory state auto inspections (IND:-INSPECL) might also be used to detect possible influences of driving habits of automobile efficiency on gas consumption

Other possibilities no doubt exist. Clearly however consumption depends primarily on the number of vehicles and the degree of use.

The model wight then be
\[
\begin{aligned}
\text { CONSUMPTION }= & \bar{b}_{0} \mp \bar{b}_{1} \text { AUTOS } \mp \bar{b}_{2} \text { BUSES } \mp \bar{b}_{3} \text { TRUCKS } \mp \boldsymbol{b}_{4} \text { PPGAL } \\
& \dot{+b}_{5} \overline{\text { MILES }:-\overline{R O A D} \mp \bar{b}_{6} A G E \mp \bar{b}_{7} \text { INSPECT }}
\end{aligned}
\]

A baffing outcome of the regressions in this probiem is the negative coefficient for PCi. This is not what we would expect in theory nor what we would have guessed from the plot of CONSUNP vs PCi (Figure E): it seems ilkely that the iarge variation in the CONSUMP coordinates for the large pCf Values permits a great deal of iátitude in fitting a ieast squares ín̄e Given thís unexpected and difficuit to expiain outcome, we might try a univariate regression of consump vs
 \(\mathbf{R}^{2}\) ís virtuaily unchanged: The residual structure is even somewhā improved (more symetrić, smalier values) as is shown by a stem-and-iēaf display and boxplot (Figure.k):

Anytime we are able to achieve à very high R\({ }^{2}\) with a good residual structure using univariate regression, we should be very reluctant to add other varlablē for small "improvements" in the explanatory power of thè model. This problem is a clear case of where the univariate model is the "best".
\[
7_{21}
\]


723

PLOF CONGUWP OE GAGTAX


724




\section*{Module \(\bar{I} \bar{I}\)}
mea cownum ue vehic anstax P pei popdens baveres rebalt
FIGURE F

btem resallisoxplot reenll three


\section*{MATABLEI REGALL}
-

-

MREG CONSUMP US VEHIC PCI SAUERES RES2y
FIGURE H
\begin{tabular}{rrr} 
MEAN & ETD. DEO \\
2.0340 & 2.0240 & \\
\hline CONETANT & VEHIC & \\
\(0.773 B\) & 0.8013 & -0.1496 \\
& 0.0141 & 0.0541 \\
& 56.9363 & -2.7662 \\
& 2.4743 & 4.8412 \\
& 2.5391 & 0.6606
\end{tabular}

ETEM RES2DISDXFLOT RES2D THREE


733

\section*{UNEC COWEDMP W VEHIC BAVERES REEID}


\section*{CMPM}
4. Stockmarket Problem
(a) SHAREIND vs. CARPROD-LAG6 is plotted in Figure A and looks somewhat curved.
SHAREIND vs. COMMIND-LAG7 is plotted in Figure B. A somewhat inear pattern (with negative slope) is discernable.

SHAREIND vs. TIME (DM) is̄ plotted in figure c. A strong Innear (although jagged) pattern is chear.

Note that since we are dealing with a model based on a specific and well defined theorétical model we would NOT perform any transformations on \(Y\) or the \(X\) 's.
(b) The MREG output is shown in Figure \(D\).
(i) Causality is not reaily an appropriate question here, since we are not inferring that \(y\) is "caused" by the independent variables, but rather thàt \(Y\) can be "predicted" via these variables. Using car production and the commodity index (with suitable time lag for effect) to "measure" the health of an economy may indeed be a reasonable economic theory.
(ii) The Independent variables may indeed be related (for example; we might expect car production to increase with population and hence with time). Other interdependencies should be investigated via économic theory.
(c) A stem-and-ieaf plot of the residuals is shown in figure \(E\). They are fairiy well behaved (aithough we should note the large number of leaves on the -2 stem, and on stems \(\geq 4\) ). A plot of the residuals vs time suggests aycle pattern (Fig= ure F): Piots of residuals vs. CARPROD-LAG6 (Figure G) and COMMIND-iAG7 (Figure H ) are more "random".
(d) The MREG output shows \(R^{2}=.8295\). This suggests that the model provides a "good" expianation of the data.
(e) Your answer to this part will depend in part on your degree of risk aversion. For most people, the model is not sufficiently accurate, nor does it inspire enough confidence, to be used \(\bar{A} B\) a basis for "playing the market". Those who are risk-seeking (i.e. "gamblers" or just "sportive") might be wiling to give this model a go in an attempt to "beat the system".
\(7 \overline{3} 5\)




\section*{711}

Tigure D


MULTIFEE K SQUAREG 0.8295
ANAEYSIS OF UARiANCE TAELE
\begin{tabular}{|c|c|c|c|c|}
\hline & 55 & DF & MS & RMS \\
\hline \(\overline{\mathbf{F}} \overline{\mathbf{T}}\) & 223190.6250 & 3 & 74396.8750 & 272.7578 \\
\hline RESİUAL & 45891.4766 & \(5 i\) & 899.8328 & 29.9772 \\
\hline total & 269082.1250 & 54 & & \\
\hline
\end{tabular}
\begin{tabular}{lll} 
FIT & 82.6786 & F.FROK. \\
0.9966
\end{tabular}

FIGURE E
STEM RES4

:
742




You have 30 minutes to complete the quiz. Answer all questions, but briefiy:

\section*{Background}

You are working for the federal Department of Housing and Urban Development (HJD): The department has juec completed a project in which \$1.3 million was gllocated to developers for the purpose of constructing new graduate lewel public management curricula in three "need" areas. Solicited proposals were scored by experts. The approximately 200 proposals received were divided equally in the thrae need areas. The maximum obtainable score was 81 and the lowest was 0.- To determine how "fair" the granting procedure was HUD has asked you to perform an evaluation. You gathered data on various characteristics of the proposals; constructed a model and used least squares techniques to estimate parameters. The results appear below.

Dependent Variable: Totai score for Proposal

Independent
Variable

Coefficient Estimate
t-statistic
Length (ín pages) .74

Budget Request (in dollars) -03
Need area 1
-7.11
5.55

Need area 2
Constant
1.80
3.10

3
47.87
\(\mathrm{R}^{2}=-21\)

\section*{Expiañàion of Variabies}

Length - number of pages; Min \(=6\) Max \(=58\).
Budget Request - how much money was requested to do the task.
Need areas 1, 2, 3-areas of training in which HUD believes new curricula are required. Introduced as \(0 / 1\) indicator variable with following structure:
\begin{tabular}{rlll} 
Need Area: & 1 & 2 & 3 \\
\cline { 2 - 4 } & & \(\frac{1}{0}\) & \(\overline{0}\) \\
Variable Values: & 0 \\
& 0 & 1 & 0
\end{tabular}

\section*{P3 3blems}
1. Why do the regression resulte imply that quality was not the only factor influencing the selection procese? 20 points
2. The foilowing is a plot of page size against total score.

a. Why does this plot suggest thà the regression results are muspect? 10 points
b: Give two alternative forms for the paga variable that would help sumarize its behavior better: \(\quad 10\) points
3. HUD has been under attack for favoring schools in the Northeast over other areas of the country. How would you test this proposition using these data; assuming you know which institutions submitted the proposals? 20 points
4. \(\bar{a}\). What is the "effect" of a proposal's being in need area 3? 20 points
b. What is the estimed atandard error of the length coefficient? 20 points

GMPM
\[
\begin{gathered}
\text { Quiz, Unit } 4 \\
\text { Solvelons }
\end{gathered}
\]
1. Both page length and curriculum need area one had significant coefficients indicating that these had an sifect on the selection process.

2a. There is curvature evident in the variable for length of proposal; the relationship is not strictly innear. Linear regression assumes a linear relātionship between the dependent and each independent variāble.
b. A parabolic fit of the form \(\overline{\bar{p}}+\bar{p}^{2}\) or using splines would have been appropiate alternative forms:
3. The proposition could be analyzed through the use of dumm variables indicating the region of the institutions subuitting the proposals.

4ā: The "effect" of proposal teing ciassed in curriculum need area 3 was the constati, i.e.; 47.87. The coefficients for need areas 1 and 2 make adjustments to the constant.
b. coefficient - t-statistic standard érror
coefficient \(=\) standard error t-stātistic
\(\frac{.74}{5.55}=.133\)
\[
751
\]

\section*{Final Examination \\ Eirst Term}

Name \(\qquad\)
Ail answers should be written on th. test. Total point score is 100. Point value for each question are indicated. Do not spend all your time ōn questions with iow point values! You have 2.5 houris to complete this examination: Your answers should be concise and to the point.

For the following problems assume that you are a piblic manager in a government agency.
(1) When you were first interviewed for this job; your supervisor could not understand why a public manager needed to take QMPM. You answered her by making four points. Circle them: 4 pt.
a. Knowledge of statistics fimpoves rational theiking.
b. A good knowledge of statistics makes you a bettē liār.
c. Public managers are essentially decfision mākers.
d. You need a graduate education in statistics to reā the New Yo Times.
e. \(\overline{\mathrm{M}}\) public policy analyses àe unplanned and post hoc.
f. Puolic managers need to be ab? \(\bar{a}\) to perform, interpret and prē sent quantit ive analyses.
g. Knowledge of skills in data analysis āsures a \(\overline{\mathrm{a}}\) GS=11 rating.
\(\bar{h}\). More often then not, data relevant to public policy decisions are quantitative and "messy".
(2) The first task you encounter on the job involves an analysis of physician offices by census tract in urban areas. The policy issue concerns the equity of access by uxban residents to physicians.
a. To begin the analysis you ask to sēe a batch of physician office data for a single city. Your supervisor āsks you what a batch is. lou reply.... 2 pt.
\[
752
\]
b. To get a feél for the "average" number of physicians per tract In this batch she suggests that you calculate the batch mean. You counter by suggesting that you calculate the median or even the mode: She asked what advantage thene have over the mean and you repiled.... 3 pt.
c. Her next request concerns variation in the data. "Calculate the variance". she says. But you hestiate ard calculate the H-spread. How are they related, and when would you not hesitate to calculate the variance? 4 pr.
d. Impressed with your knowledge shéasks you to draw a histocram: You construct a sten-anc-leaf display instead. What is one essential difference between these two kinds of displays? 2 pt :
 in oniy a few census tractss and that; by and large, most tracts have only a few offices and many have none. sketch an outine of what the stem-and-leaf of this sata probabi\% 1ooks ilke. 2 pt.
f: When you see the stem-and-leaf of the physician data, you immediately suggest re-expressing. What migit a re-expression achíeve? 2pt.
\[
7
\]
8. When you talk about ohis problem, you casually mention the simple ladder of powers. What is the simple ladder of powers, and why is it relevant to this problem? 4 pt.
h. She then aske how fou decided which transformation to use, and you tell her about ix general technique. What is it? 2 pt:
1. Since physician offices are counted data, you had in mind a specific transformation before you even try this method for finding a transformation. What transformation wae it that you had in mind? 2 pt:
1. A colleague suggests looking at the data differently. Instead of counts he suggests dividing the number of offices in each tract by the total number of offices in the city. This would yisid a vari ile that was the proportion of a city would you be Ifkely to ry on the data when they are in this form? 2 pt.
k. Elated with your thorough analysis of the single batch of physician data, another colleague suggested that you look at data from several cities simultaneously and compare them: Knowing that cities vary quite a bit in size you thought that re-expression would be needed. Why might you need to transfori the data for this comparison, and how would you find the appropriate transformation? 4 pt.
\[
754
\]

\section*{GMPM}
(3) Pursuing the analysis of office location, you decide to bee if you could construct a model relating the number of offices in a tract to other public policy relevant features of the census tract:
a. In constructing the model you are told to include-median income and socioeconomic statis as independent variables: but you sūpect thāt these variables are highly correlsted: This means that 1 pt.
(a) Thére is a linear relationship between them:
(b) Their covariance is positive:
(c) They \(\bar{a} \bar{r} \bar{e}\) rē̄ated in a curvilinear fashion:
(d) The covariance equās the product of the standard deviātions.
b. You expect to use iéast \(\overline{\text { B }}\) quares techniques to estimate yoūr model. Consequenty, you suspect that two problems may arise because of these correiated variables. 2 pt.
(a) \(\mathrm{R}^{2}\) will be near unity.
(b) Their coefficiént estimates will be unreliable.
(c) The residuals will be randor.
(d) \(\underline{y}^{\prime}\) inil not invert.
(e) rine computer may have problens win (X'X) \({ }^{-1}\)
(f) The coefficient of determinat:
c. To get around theae problems you suggest two possible solutions: \(2 \overline{p t}\).
(a) Use ony one of the pair.
(b) Add one to each variable and take logs.
(c) Use weighted least squares.
(a) Use ridge regression.
(e) UBe the arc-sin square root transformation.
\[
75 \%
\]
d. When you tell your bupervisor about your intentions to use least squares to estimate the model she asks what this means. Tour reply is chat it uses one specific ininimization criterion which is: minfinize ...... ipt.
(a) \(\bar{\Sigma}\left(Y_{1}-\bar{Y}_{i}\right)\)
(b) \(\Sigma\left|Y_{i}-\bar{Y}_{i}\right|\)
(c) \(\Sigma\left(Y_{i}-\hat{Y}_{i}\right)^{2}\)
(d) \(\Sigma\left(Y^{2}-\bar{Y}_{i} \overline{2}\right)\)
(e) None of the above.
e. You continue your explañáton by saying that, "If the assumptions underlying least squares hold; then this procedure Yiélds optimal estimaies of the coefficients". What are the assumptions? 3pt.
4. "But in what sense ere least squares regression lines optimāl? she asks. You reply... 3 pt.
8. "ox", your colleague pipes up, "so they are optimal when the assumptions hold. But auppose that for our dāta the assumptions don't hold. What does that imply?" In your response you touch on the consequences of failure in each assumption. What do you say? 4 pit.
\[
750
\]
(4) At this point you have established your credentiās as a competent policy researcher. Word passes quickly through offices in an agency; and when you turn around you meet an economist from down tire hall: He explaine that he, too, is working on a physictan study but he has been investigating the growth of the physician supply in different countries. Be gays he is going to fit a straigh: line to the data from five countries and contrast slopes. You are aghast and demand to see plots of cupply versus time. He shows you the five plots below and you know that you are right again. Instead of simply cranking the data through you counsel fitting different models to summarize each batch of paired values. Which aiternatives below do you suggest for each of the plots? 10 pt.
i) logged dependent variable
ii) iogged indeperdent variable
iii) iogged dependent and independent variable
iv) centinusas spline
v) discontinzous spline
vi) stratught line linear model
viii) ininear modei after removal of outliers
viii) innear model with dumy vartable(s)



\[
758
\]

\(\because\)

(5) Very concerned about this affrone to his knowledge in the presence of hie peers, the conomint ex iains that it doesn't make any difference Retaining your cool, you politely disagree and for each of thic five cases you deacribe how à suple linear fit and the itte you've suggested would dif, Tour explanaions focus on wat the residuale fram the ing fe fite would look like. 10 pt.
(6) Impressed by your knowledge your coilieague admity to having performed regressions nutomaticeily before. He shows you the following residual plots and asks what he should do next each. 10 pt.


\[
760
\]

\section*{GYM}



XVİ.İ. 380
(7) The same colleague tells you of study of income and years of physician training in different countries. He shows you the following plots. Since arch is univariate situation you suggest resistant lines. But he doesn't understand and you sketch (on the plotē) how least squares and resistant lines would look in each situation. 10 pt.

(b)

\[
=762 .
\]

GYEM


(8) Once you got ríd of your now better informed colleague you are once agian able to concentrate on your own problem, physician location in cities. Someone draws your attention to an articie on physicin locition by the famous cientific research team of Replan and Leinhurdt: You know this paper and recall its presentation and findings: In particular; you recall that they found little or no effect for an area income and racial characteristics. In the paper they resent the results of their regression runs and imply that this should convince. Were you convinced? If so; wisy? If not; what else would you want to see before you were convinzen?
(9) You also recall that they included variables that had policy relevance from two points of view. What are these points of view and what are examples of variables in each category? 4 pt.

\section*{GIPM}

Final Examination Solutions
First Term
(1) Correct answers are (c), (e), (f), and (h), although Huff emphasizes that (b) may be true:
(2) a A batch of data is a set of similar numbers, obtained in some consistent fashion.
b. Bach average, the mean, median, and mode, is é typical value for a batch. The mean is a perfectiy good average if the batch is well-behaved; or even just symetric. Howeverg unilke the median, if there are discrepant or outlying observations in the batch; the mean is very sensitive to these departures from "well-behavedness", since we must sum all the observations to find the mean. In the batch given to you by your supervisor; the shape will not be symetric because of many tracts with zero physicians; rather, the shape will be skewed to the right. Hence, the median, the middie observation of the batch; or perhaps the mode, the data value with the largest frequency, will be more typical of the batch than the mean.
c. The \(\mathrm{H}-\mathrm{spread}\), the difference between the hinges, and the variance are bōth measurēs of spread. In a well-bē̄aved batch,
\[
3 / 4 \cdot \text { H-spread }=\sqrt{\text { variance }}
\]

The \(H-\bar{s} \bar{p} \bar{e}\) ead \(i \bar{s}\) a more resistant measure of spread than the variance: Only with a well-behaved batch is the variance an acceptā̄e mēasure:
d. A stem and=leaf display retains additional information on the data values by using the digits imediately to the right of the stems to indicate "heights" or frequencies of each stem. With a histogram, only the heights of the bars are indicated, and the leáf digits are discarded.
\[
765
\]

シ. Unit \(=1 \%\)

or values with this shape.
f. A reexpression of these data wili promote symmetry within the batch and perrhaps dēcrease the number of outiying values.
f. The ladder of powers is a graphical representation of reexpressions of the form \(\bar{X}+\bar{X}^{R}\) for values of \(\bar{R} \overline{s u c h} \mathbf{a s}-1 ;-1 / 2\), 0 ( \(=10 \mathrm{~g}\) ) ; \(1 / 2 ; 1 ; 2\). We can use the 1adder to determine the effects that various reexpressions will have on the original batch, ég.; a batch skewed to the right has a long right tail;
 force more of the observations into the right tail of the data; while making the skewness iess noticeable.
h. Examine the mean; median; and midhinge \(=1 / 2\) (UH + LH), and perhaps the mid extreme \(=1 / 2\) ( \(E \mp E\) ). In a symmetric batch; these quantities are equal. By reexpressing the 5 -number sumary of the batch; you can compute the 4 quantities and examine their equality/inequality and hence; find the best transformation. Hint:
```

If med < midsp < midext.; go down the ladder.;
If med > midsp > midext:, go up the ladder."

```
i. Square root, or perhaps logarithms, movinge down the ladder.
1. Square root of the arcsine of proportion physician offices in each tract.
\[
\frac{76 G}{\operatorname{xvI} . \mathrm{II} .385}
\]
K. One augeation 18 meréy to examine the proportion of physiclan offices in each tract in each city, since these data are independent of the size of the city: If you desire to work with the actual numbers and diacover that the spread of the batchas increases or decreases as the iocation of each batch changes; then a log median vs log mídspread plot will reveal a reexpression that stabilizes the spreads.
(3)a: Correct response is (a).
b. Correct responses sre (b) and (e).
c: Correct responses are (a) and (d).
d: Correct response is (c).
e. Assumptions are
(1) The model is correct, \(\bar{i}, \mathrm{e}, \overline{\mathrm{y}}\) is \(\overline{\mathrm{a}}\) Inear function of the天'百.
(2) Residuals are independent.
(3) Residuals are homoscedastic.
(4) Residuals āe well-behaved:
f. Out of all inear unbiased estimates, the least squares ine is the one with minimum variance: Least squares lines are optimal only if the 4 asāumptions hold:
8. (1) If the model is not correct the regression coefficients do not estimate the true population coefficient values. Moreover, none of the computed regression statistics are believable.
(2) Nonindependence of the residuais indicates that the observations are related. The \(R^{2}\) tatistic will not measure the goodness of fit, and the standard errors of the regression coefficients will not be accurately computed.
(3) Heteroscedastic errors have the same effect on the computed regression statistics as nonindependence of errors.
(4) Non-well-behā̄edness of residuals invalidates various distributional assumptions, e.g. batches of regression coefficients will not be well behaved.
\[
7 E \%
\]
(4)a. Dummy variable.
b. Logged dependent vāiāble.
c. Straight line linear modél after removal of outlier.
d. Logged dependent or logged independent variable; or both if necessary.
e. Continuous spline.
(5) For each of the suggested fits; the residuals, plotted against time; should appear as a random swarm of points, cẹntèred on the time axis; and ás à well-behaved batch when displayed in à atem= andeleaf:

The residuals of the fits using the oripinal data will exhibit various patterns; as shown below:
(a)
 3 ciusters of residualis
(b)

XVI.İI.387

GHM

(d) ame as b.
(e)
trigonoméric pattern

(6)a: Do nothing.
b. Transform; \(\bar{X}\) up the laddex, or \(\bar{Y}\) dow:
c. Transform \(Y\) to remove heteroscedasticity; or used weighted least squares.
d. Fite a quadrátic to the dàta:
\[
y=a+b x+c x^{2}
\]
e. Computations probably incorrect. Make sure that \(X\) has been included \(\bar{i} \bar{n}\) the model, where \(X=\) variable of x-axis.
\[
759
\]


\section*{GMPM}


(8) Kaplan and Leinhardt studied a rather controversial issue and their results; as indicated in the exam questions; contradicted most expectitions. As the exam questions also pointed out, how ever, they reported only the regression results. That is, they gave coefficient values and t-statistics and expected the reader to be convinced by their results. In any analysis and espectally one involving a highly controversial issue; we would want more information on the data analysis procedure. The issue of bellef here is one of an evaluation of the effectiveness of the analysis. Thus, we would want to see such things as a correlation matrix to bee if colilnearity oçcurred; stemand-ieaf and plots of residuals to detect heteroscedasticity, non iinearity and non-well behavedness, discussion of possible interactions and plots of independent variabies against the dependent variabie to expiore for needed transformations: A general jíscussion of the expioratory phase should always appear but actual exploratory results are especially important in this case because poiicy may be infiuenced by the analytic results and if the resuits are due to poor analysis the policy may do more harm then good.
(9) Policy variables may be of two types: On the one hand they may be "policy manipulabie", i-ē, we may be ābie to construct public policies which actualiy change these variables. On the other hand they may be "policy directive", i-éa while not actually amenable to manipulation by policy they may filde poifcy development by focusing attention on speciai situaíions ō target groups. Examples of the former variables are roning regulations hospital beds; physician offices education, income: Examples of the latter are race, age, population: it shouis al \(\overline{8}\) be pointed out that if the policy issue is one invoiving sne location of individuals even policy directive variābles may beceme policy manipulable variables. For example, we can change the age distribution of a census tract by erecting an apartment house solely for senior citizens.
\[
7 \mathrm{Mi}
\]

QM
Handout
Covariances and Independence in the Bivariate
Multiple Regression Model

Consider the situation of two "independent" x variables:
\[
\overline{\hat{y}}=b_{0} \mp b_{1} x_{1}+b_{2} x_{2}
\]

The least squares solution for \(\underset{\sim}{b}\) is
\[
\underset{\sim}{b}=\left(x^{\prime} x^{-1}{\underset{\sim}{x}}^{\prime} \bar{z}\right.
\]

To make this result easier to comprehend; center the variables by subtracing their means:
\[
\bar{x}_{11}=\bar{x}_{1}, x_{i 2}=\bar{X}_{2}, \bar{Y}_{1}-\bar{Y}
\]

This \(\bar{s} \overline{\mathrm{~h}} \overline{\mathrm{f}} \overline{\mathrm{t}}\) of location forces the in ne to pass through the origin and, therefore, to have \(\bar{a}\) y intercept of 0 . Thus, \(\bar{b}_{0}=0\) in this "new" model and we do not need a column of ones in the \(\underset{\sim}{\mathbb{X}}\) matrix.
\[
\underset{\sim}{x} \text { becomes } \quad\left(\begin{array}{cc}
\bar{x}_{11}-\bar{x}_{1} & x_{12}=\overline{\bar{x}}_{2} \\
\bar{x}_{21}=\bar{x}_{1} & \bar{x}_{22}=\overline{\bar{x}}_{2} \\
\vdots & \vdots \\
\vdots & \vdots \\
\bar{x}_{N 1}-\bar{x}_{1} & \bar{x}_{N 2}-\bar{x}_{2}
\end{array}\right)
\]
and X \(^{\prime}\) is
\[
\left(\begin{array}{ll}
\mathrm{x}_{11}=\overline{\bar{x}}_{1} & \bar{x}_{21}-\overline{\mathrm{x}}_{1} \ldots \ldots \mathrm{x}_{\mathrm{N} 1}=\overline{\mathrm{x}}_{1} \\
\mathrm{x}_{12}=\overline{\bar{x}}_{2} & \bar{x}_{22}-\overline{\mathrm{x}}_{2} \ldots \ldots \mathrm{x}_{\mathrm{N} 2}-\overline{\mathrm{x}}_{2}
\end{array}\right)
\]
\[
7: 3
\]
\(X^{\prime} X\) is the product of these two matrices:
\[
X^{\prime} x=\left(\begin{array}{cc}
\Sigma\left(x_{i 1}-\bar{x}_{1}\right)^{2} & \Sigma\left(\bar{x}_{i 1}-\bar{x}_{1}\right)\left(x_{i 2}-\bar{x}_{2}\right) \\
\Sigma\left(x_{i 1}-\bar{x}_{i}\right)\left(\bar{x}_{i 2}-\bar{x}_{2}\right) & \Sigma\left(x_{i 2}-\bar{x}_{2}\right)^{2}
\end{array}\right) .
\]

Recall that the variance of \(X\) is defined as
\[
\operatorname{Var} x \equiv \frac{1}{N} \sum_{i=1}^{\bar{N}}\left(x_{i}-\overline{\bar{X}}\right)^{2}
\]
and the covariance of \(X_{k}\) and \(X_{p}\) is
\[
\operatorname{cov}\left(x_{k}, \bar{x}_{p}\right)=\frac{1}{N} \cdot \sum_{i=1}^{N}\left(\bar{x}_{i k}-\bar{x}_{k}\right)\left(x_{i p}-\bar{x}_{p}\right)
\]

When the covariance of \(\bar{x}_{1}\) and \(\bar{x}_{2}\) is 0 then the variables are not linearly related; when it is \(>0\) or \(<0\) they are linearly related.) Therefore, ( \(X_{\sim}^{\prime} \underset{\sim}{x}\) ) can be written ass
\[
\mathcal{X}^{\prime} X_{N}=\bar{N} \cdot\left(\begin{array}{lr}
\operatorname{Var} X_{1} & \operatorname{cov}\left(\bar{x}_{1}, x_{2}\right) \\
\operatorname{cov}\left(\bar{x}_{1}, \bar{x}_{2}\right) & \operatorname{Var} x_{2}
\end{array}\right)
\]

The inverse of this symmetric matrix is simply
\[
\left({\underset{\sim}{x}}^{\prime} \underset{\sim}{x}\right)^{-1}=\frac{1}{N\left(\operatorname{Var} \mathrm{X}_{1} \operatorname{Var} \bar{x}_{2}-\left(\operatorname{Cov}\left(\bar{x}_{1}, x_{2}\right)\right)^{2}\right)} \cdot\left(\begin{array}{ll}
\operatorname{Var} \bar{x}_{2} & -\operatorname{Cov}\left(x_{1}, x_{2}\right) \\
-\operatorname{Cov}\left(x_{1}, \bar{x}_{2}\right) & \operatorname{Var} x_{1}
\end{array}\right)
\]

To evaluate \(\underset{\sim}{x} \underset{\sim}{y}\) we simply multiply
\[
\underset{\sim}{y}=\left(\begin{array}{c}
y_{1}-\bar{y} \\
\vdots \\
\vdots \\
y_{N}-\bar{y}
\end{array}\right) \quad \text { by }{\underset{\sim}{x}}^{\prime}
\]

774

\section*{QMPM}
to get
\[
\binom{\Sigma\left(\bar{Y}_{\overline{1}}-\overline{\bar{Y}}\right)\left(\bar{X}_{11}-\overline{\bar{X}}_{1}\right)}{\Sigma\left(\bar{Y}_{1}=\bar{Y}\right)\left(x_{i 2}=\overline{\bar{X}}_{2}\right)}
\]

But this is

Now, \(\left(X^{\prime} x^{-1} x^{-1} x^{-i}\right.\) can be written
\[
\frac{1}{\left(\operatorname{Var} \bar{X}_{1} \operatorname{Var} \bar{X}_{2}-\left(\operatorname{Cov}\left(X_{1}, \bar{X}_{2}\right)\right)^{2}\right)}\left(\begin{array}{ll}
\operatorname{Var} X_{2} & -\operatorname{Cov}\left(\bar{X}_{1}, \bar{X}_{2}\right) \\
-\operatorname{Cov}\left(X_{1}, X_{2}\right) & \overline{\operatorname{ArP}}_{1}
\end{array}\right)\binom{\operatorname{Cov}\left(\bar{Y}, \bar{X}_{1}\right)}{\operatorname{Cov}\left(\bar{Y}, \bar{X}_{2}\right)}=\binom{\bar{W}_{1}}{\bar{b}_{2}}
\]

Multiplying out and setting up equations for \(\bar{b}_{1} \overline{\operatorname{an}} \overline{\mathrm{~d}} \bar{b}_{\mathbf{2}}\) gives
\[
\frac{1}{\operatorname{Var} X_{1} \operatorname{Var}_{2}-\left(\operatorname{Cov}\left(X, X_{2}^{-}\right)\right)^{2}}\left(\operatorname{Var} X_{2} \operatorname{Cov}\left(X, X_{1}\right)-\operatorname{Cov}\left(X_{1}, X_{2}\right) \operatorname{Cov}\left(Y, X_{2}\right)\right)=b_{1}
\]
and
\[
\frac{1}{\operatorname{VarX}_{1} \operatorname{Var}_{2}-\left(\operatorname{Cov}\left(X_{1} ; \bar{X}_{2}^{-}\right)\right)^{2}}\left(\operatorname{Var} \bar{X}_{1} \operatorname{Cov}\left(\bar{Y}, X_{2}\right)=\operatorname{Cov}\left(X_{1} ; \bar{X}_{2}\right) \operatorname{Cov}\left(Y_{,} \bar{X}_{1}\right)\right)=b_{2}
\]

By examining these equations we can see two important aspects of least squares estimation. First, if the two variables \(\bar{x}_{1}\) and \(\bar{x}_{2}\) are identical then \(\overline{\operatorname{Cov}}\left(\bar{X}_{1}^{-} ; \bar{X}_{2}\right)\) will be \(\operatorname{Cov}\left(X_{1}: X_{1}\right)\), and this equals var \(X_{1}\). Consequently, the difference \(\operatorname{VarX}_{1} \operatorname{VarX}_{2}=\left(\operatorname{Cov}\left(\mathrm{X}_{1} ; \mathrm{X}_{2}\right)\right)^{2}\) will reduce to \(\left(\operatorname{Var} X_{1}\right)^{2}-\left(\operatorname{Var} X_{1}\right)^{2}=\) and there will be no solution (or an infinite number of solutions) to the equations for the b coefficient. Obviously, when the denominator is close
\[
775
\]
to 0 (when \(X_{1}\) and \(X_{2}\) are very similar) computers will begin to have problems giving precise answers.

On the other hand; when the two \(X\) variables are not linearly related at all then \(\operatorname{Cov}\left(X_{1} ; X_{2}\right)=0\). Consequently, the equation for \(b_{1}\) (and similarly for \(b_{2}\) ) reduces to:
\[
\frac{1}{\operatorname{VarX}_{1} \operatorname{VarX}_{2}}\left(\operatorname{Var}_{2} \operatorname{Cov}\left(\mathrm{Y} ; \mathrm{X}_{1}^{\prime}\right)\right)=\mathrm{b}_{1}
\]

Or
\[
\frac{\operatorname{Cov}\left(\overline{\mathrm{Y}}, \mathrm{X}_{1}\right)}{\operatorname{var} \mathrm{X}_{1}}=\bar{b}_{1}
\]

Writing this out yields
\[
\frac{\Sigma\left(\bar{x}_{i 1}-\bar{X}_{i}\right)\left(\bar{Y}_{i}-\bar{Y}\right)}{\Sigma\left(\bar{x}_{i 1}-\bar{X}_{i}\right)^{2}}=b_{i}
\]
which is the equation we obtained for the univariate situation. The equation for \(b_{2}\) would be
\[
\frac{\bar{\Sigma}\left(x_{12}=\bar{x}_{2}\right)\left(Y_{i}=\bar{Y}\right)}{\Sigma\left(x_{i 2}=\bar{x}_{2}\right)^{2}}=b_{2}
\]

These equations yield the same value for \(\underset{\sim}{b}\) as would be obtained if individual univariate regressions were run. In general we observe that the least squares solution of the \(\bar{p}\) variable multiple regression situation will gield the \(b_{\dot{1}}\) values as \(p\) individual univariate regressions when all variables have zero covariances: (This will not be true for \(\mathrm{b}_{\mathrm{o}}=\) why not?) When the \(X\) variables are not strictly statistically independent (i.e., when the covariances of the \(\bar{x}\) variables do not equal zero) the multiple regression solution and the univariate regression solutions will differ.
\[
\mathrm{XVI} . \mathrm{II} .395776
\]

Handout
What to look for in reading technical reports

\section*{eneral}
hat is the problem being addressed?
E it a substantive or methedological issue?
- It a basic or secondary issue?
- it an applied issue; a theoretical issue, or a combination?
s it part of an established rescarch tradition or does it atand bone?
an you see any relevance for your concerns?

\section*{atia}
hat are the data?
here do they come from?
low were they gathered?
re there "data problems" (missing values; poor sampling, pooriy defined measures, etc.)?
re the data relevant to the problem addressed or are there better sources
of information on the topic?
re the data available if you wanted to pursue the analysis?

\section*{lethod}
hàt procedure(s) was used?
is the analytic procedure appropriate to the data?
ifil it speak to the problem addressed?
so you underatand it?
lave you used it before or is it new?
:s its application hare novel and innovative or typical and expectéd?
ire there other procedures which could have been used?
ind exploration precede confirmation?
[f not, do you believe the anelysis?
jan the method be appiié tō other areās?

\section*{lesultes}
that are they?
jave you learned anything?
[s it important?
jo you believe it?
[s it relevant to your own concerne?
sre there any poifcy implications?
How do they relate to other things you know about this or related problems?
Do you believe the reaults are robust and will hold outside of the limited contert of this atudy; i.e., can they be generalized?
\[
\bar{x} \bar{I} \cdot \overline{I I} .396 \text { '7 } \overline{7} \overline{7}
\]

\section*{Maceilancous}

Was it worth the effort?
Is it andmark betté forgotéen?
Has the author(s) publizhed anything else that you might follow-up?
Are thé references useful?
Was the presentation adequate and convincing?
can the data bé mined for other lēsuēs?
Are there any outetanding problemes?
Were all the questions raised dealt with?
What are the directions for future research?

778

\section*{Some Principles of Graphics for Scatterplots}

This handout is a continuation of the Module \(\overline{\mathrm{I}}\) handout concerning some standards for graphics. The earlier handout was concerned with tables and charts; this handout focuses on scatterplots, or graphic displays of (X,Y) paired observátional data sets: As before, some of these principles are due to Edward \(R\). Tufte:

The principles discussed here are:
(1) Less is more;
(2) Suppressing the frame and grid;
(3) Pay attention to details;
(4) Friendiy lettering and other aesthetic considerations:
(5) Using parallel plots.

We intersperse our text with many examples, both good and bad, taken from the pages of The New York Times, Business Week, and several scientific journals. Ās mentioned in the earlier handout; we feel that paying attentíon to the details expounded upon in these pages will help you produce good displays.
\[
779
\]

Principle 1: Less is More
"Less is more" is the first principle in both this handout and the earíer graphics handout. It is āso the most important. Why should we waste pages and pages of text when àmple and explicit graphical display suffíces?

Scaterplots, especially of time series data, are used in reports
 in value as more authors recognize their usefulness in presenting and summarizing the relationship between two quantifiable variables.

Ás an illustrative example, consider the scatterplot shown in Figure 1.

Tufte plotted the work load of the Pubícations Distribution Service for the U. S . House of Representatives as a time seriọ. This diplay has an immediate impact on the reader. There are dramatic peaks In the data every second October -. right before Election Day!

The New York Times published a very involved, 700 word article to describe this phenomenon (N:Y. Times; June; 1975; p. 28). A display, such as thāt prepared by Tuffe; could certainly have shortened the article ānd ēnhanced reader enjoyment.

FIGURE !

MILLIONS OP MORK-UNITS PER MOITH, 1966-1972


Principle 2: Suppressing the Frame and Grid
Considerations when making a scatterplot were discussed in the Prérequisite Inventory; Module í and Chapter 4 of Hoagifn's forthcoming text A First Course in Data Analysis. We want to emphasizé that final versions of scatterplots shoula not contain the giaph paper grid, nor should the frame of the paper be inciuded.

Consider Figure 2; a graphic that violates this principle. It is difficult to find the points in the grid. Figure 3 shows the same plot; Eirst with grid (and quite a few of the points) sippressed, and then second, underneath the first, with grid and frame erased. The first plot greatly simplifies the reiationship between \(\bar{X}\) and \(\bar{Y} \bar{b}\) sumarizing it with a line (where is the equation?) and a few token points (perhaps too \(\bar{f} \bar{e} w)\). The second \(\bar{p} 10 \bar{t} \bar{s} \overline{\text { singhty better. Comments are Tufte's. }}\)
 registration rates and prédicted ratés. Isn't this relationship one of "actual data values" tóo "f̄́ttéd data values"? How can we betrē analyze these data, using techniques introduced in class?

\section*{QAPM}

FIGURE 2

-


等



Source: Staniey Relley, Jro, Richard E. Ayres, and William G: Bowen, "Registration and Voting: Put

784


\section*{FIGURE 9}

ACTUAE AND PREDICTED SHARE OF THE zwo-party vote received by CONGRESSIONAL CANDIDATES OF PRESIDENT'S PARTY
i

Source: Edward R. Tuffe"Determinants of the outcome of Midterm Congressional Electinns," American Political Science Review, 69 (September, 1975), p. 818 .
extra digita not needed; ":O" chould be deleted from each number



Source: Stanley Kelley, Jri, Richard E. Ayres. ond Hiliam G. Bowen,
"Resigtiation and vocing: Putting firat Things Firisi" Anerican policicà Science Review, 61 (June; 1967): Eiguré From reprinted version in Edward R. Tufte, ed. The Ouantitetive Annlvis of Social Pioblems (Reading, Massachucetts: \(\frac{\text { Addison-Wesiey, 1970). Po } 267 .}{}\)
XVI.II.4e3

Principle 3: Pay attention to Details
By giving the détaís of a scatterplot proper attention; a good display can bé made even bettér. If the graphic can bé reproduced in color, then \(\bar{b} \bar{y}\) all means, māke the points black, the scāle green, and the fitted inne red. Choose a good symbol to use for plotting points. We prefex \(\bar{x}\) over - bécause the former symol is larger. If you have different types of points; use different symbols to highlight the differences.

Consider Figure 5 from an articie pubiished in Science. The authors are analyzing sex discrimination in graduate school admissions at Berkeley. They have plotted the percent women admitted (Y); versus percent women acceptē ( \(\bar{X}\) ), one "box" per department. Note that thé size of the boxes is rélated to the total mumer of applicants to the department. Here are some criticai coments:
1. No detailed scale for size of box given. Why not labél the largest boxes, and give total number of applicants?
2. Why is the minimum box size \(\leq 40\) ?
3. Fittē line does not \(\overline{\mathrm{f}} \overline{\mathrm{i}} \overline{\mathrm{t}}\) the data:
4. Lettering is of poor quality.
5. Could we improve on the use of the boxes?

786

FIGURE 5


Proportion of applicants that are women plotted against proportion of applfCcanta idmilted, in 85 departments. Size of box indicates relative number of applicints \(i\) to dhe departmeat

Source: P. J. Bickel, E. A. Hanmel, and J. W. O'Connēl, "Sex Bias in Graduate Admissions: Data From Berkeley," Science, 187 (February 7, 1975), p. 400.

QMPM

Principle 4: Friends Lettering; etc.
 details. "Friend lettering" is a good example. Instead of typing comments on the display; letter them by hand. If necessary; let a professional do it Graphics by Roger Hayward are good examples of friendly ploce; an shown in the plots of Figure \(\underline{5}\) taken from a Chemistry text: Hayward \(\overline{1} \bar{z}\) best known for his graphics work found in the "Amatelir Scientist" section of scientific American.



FIGURE 6


7ha. 17 :. Vapor promure érene for millur.




\section*{Principle 5: Using Parailel Plots}

Parallel plots are useful in sumarizing complex data sets. The graphe in Figure 7 are from Business Week and are quite attractive. Business Week usuaily produces very good displays of economic time seriés data.

FIGURE 7


QUANTITATIVE METHODS FOR PUBLIC MANAGEMENT
MODULE III, REVISED

Developed by
SCHOOL OF URBAN AND PUBLIC AFFAIRS CARNEGIE-MELLON UNIVERSITY

SAMUEL LEINHARDT, PRINCIPAL INVESTIGATOR and
Stanley S. WASSERMAN

\section*{Under Contract to}

THE URBAN MANAGEMENT CURRICULUM DEVELOPMENT PROGRAM
THE NATIONAL TRAINING AND DEVELOPMENT SERVICE
5028 Wisconsin Avenue, N.W.
Washington, D.C. 20016

Funded by
The Office of the Assistant Secretary for Policy Development and Research
H.S. Department of Housing and Urban Development

Package XVI

\section*{Acknowledgements}

Assistance in the preparation of this package was provided by Blaine Aikin, Larry Albert, Joseph Chmill, Steve Clark; Marjorie Farinelli, Janice Greené, Gréchen Hemmingsen, Pāul W. Hoiland; JMichael Hopkins, Gaea Lénhardt, Richard Sandusky, Christine Visminas, Diane Warriner, and Tamar Zeheb.


 - उع


Material intended solely for the instructor is denoted by an (I). Mateerial that should also be distributed to the students is denoted by an (S).
\begin{tabular}{|c|c|}
\hline & Page \\
\hline Introduction to Module ifi (I) & XVI.III.1 \\
\hline Reading Assignments; Unit 5 (S) & XVI.III. 4 \\
\hline Prerequisite Inventory, Module ini (S) & XVI.III. 5 \\
\hline Homework; Prerequisite Inventory, Module III (S) & XVI.III. 11 \\
\hline Homework Solutions; Prerequisite Inventory, Module III (I) & XVI.III. 12 \\
\hline Lecture 5-0 outinne ( \({ }^{\text {( }}\) ) & XVI.III. 13 \\
\hline Lecture 5-0 Transparency Presentation Guide (I) & XVI.III. 21 \\
\hline Lecture 5-0 Transparencies & XVI.III. 22 \\
\hline Lecture 5-1 Outine ( I ) & XVI.III. 27 \\
\hline Lecture 5-1 Transparency Presentation Guide (I) & XVI.III. 32 \\
\hline Lécture 5-1 Transparencies (S) & XVI.III. 33 \\
\hline Leecture 5-2 Outline (I) & XVI.III. 46 \\
\hline Lecture 5-2 Transparency Prēsentātion Guide ( \({ }^{\text {( }}\) & XVI.III. 53 \\
\hline Lecture 5-2 Transparencies (S) & XVI.III.54 \\
\hline Lecture 5-3 Outline (I) & XVI.III.64 \\
\hline Lecturè 5-3 Transparency Prēsentation Guide (I) & XVI.III.70 \\
\hline Lecture 5-3 Transparencies (S) & XVI.III.71 \\
\hline Homework, Unit 5 (S) & XVI.IIf.81 \\
\hline Homework Solutions, Unit 5 (I) & XVI.III:88 \\
\hline Quiz; Unit 5 (I) & XVI.III:93 \\
\hline Quiz Solutions, Unit 5 (I) & XVI:III.97 \\
\hline Reading Assignments, Unit 6 (S) & XVI.III.99 \\
\hline
\end{tabular}
Lecture 6－0 Outline（I）

XVま－主主主－100
Lecture 6-0 Transparency Presentation Guide (I)
Lécture 6-0 Transparencies (S)
Lecture 6-1 Outline (I)
Lecture \(\overline{6}=\overline{2}\) Outīine ( \(\bar{I}\) )
Lectüre 6-2 Transparency Presentation Guide (I)
Lecturē 6-2 Transparencies (S)
Homework, Unit 6 (S)
Homework Solutions; Unit 6 (I)
Quiz, Unit 6 (I)
Quiz Solutions, Unit 6 (I)
Reāding Assignments, unit 7 (S)
Lecture 7-0 Outline (I)
Lécture 7-1 Outline (I)
Lecture 7-2 outline (I)
Homework, Unit 7 (S)
(There are no solutions to unit 7 homework, since there
is no singié "correct" answér.)
Quiz, Ūnít 7 (I) XVI.ĪĪ.161
Quiz Solutions, Unit 7 (I)

XVI．まモI． 105
XVI ．III ． 106
XVI．III． 111
XVI．III． 117
XVI．III． 123
XVI．III． 124
XVI．III． 126
XVI．III． 129
XVI．III． 134

XVI．III． 139
XVI．III． 141
XVI．III． \(14 \overline{3}\)
XVI．III． 148
XVI． \(\bar{I} \bar{I} \bar{I} . \overline{153}\)
XVI．III． 160

XVI．III． 161
XVI．III． 164

\section*{Overview}

Module III of the Quantitative Methṑs for Pubiic Management package contains three units, numbers 5; 6 and 7: Unit 5; Probability and Sampling, introduces the student to the notions of probability and random variables. The rēàive frequency approach to probability is emphasized and à sampling experiment is used to provide a concrete, empirical feel for this fundamental ideā. Following the introduction of probability notions; the concept of a random variable; a variable which takes on values with associated probabilities is introduced. Distributions for selected random variables are then discussed with special emphasis placed on those random variables traditionally associated with linear models. The shape of distributions is illustrated using the graphics tools of Module I.

Distribution is felt to be important to future pubifc managers because many policy relevant analytic situations requíre knowiedge of the characteristic shape and moments of a variety of weli known random variabies. Simple computing probabilities of events; such as the probability of finding a physician in a census tract when the physician distribution is known to be Poisson, requires knowledge of how the random variable behaves. The distributions introduced in Unit \(\overline{5}\) cover those most inkeiy to be encountered in the field. Furthermore; exposure to these selected distributions prepares the student to use others as the occasion arises in the computation of moments and the performance of such inferential procedures as constructing confidence intervals and hypothosis tests. Numerous examplés in presentation material; homework; and exams in Module III illustrate the everyday utility of applied distribution theory.

\section*{QMPM}

Unít \(\overline{6}\), Inference, introduces the student to the use of probability notions in determining the precision of parameter estimates and testing hypotheses. The material covered here is traditional statisticā infèrence. However, students are cautioned against bind use of these pro= cedures through careful consideration of the stringent assumptions implicit in the approach.

Unit 7, Sample Surveys, departs from the usual material taught in QMPM in that it concerns data collection rather than data analysis. The unit introduces the student to the use of surveys; the design of questions; questionnaire layout, fielding procedures and samping designs. Enphasis is placed on the utility of surveys in policy analysis and their shortcomings. The objective of the unit is to create intelligent consumers of survey reports rather than skilled survey researchers. Since this is a vast area covered in only three lectures, it is implicitly assumed that when the student becomes a practitioner and has need for a survey a profeasional organization with experience in conducting survey research will bé rétaíned.

\section*{Specific Objectives}

\section*{Unit 5}

Upon successful completion of Unit 5 a student will acquire an understanding of what is meant by the mathematical notion of probability and will be able to use this notion in the study of random variables and their applications. The student will be able to specify the distributions of selectéd continuous and discrete random variables inciuding the Normal, rectangular, exponential, uniform, binomial and poisson: The student will also be able to compute first and second moments for random vāriables with these distributions and to recognize when empirical data are likēy
to be observations on random variā̄ies with these distributions. The student wīl also be familiar with the \(\bar{t}, X^{2}\) and \(F\) distributions, how they are related to each other and to the Normal, and how they arise In a Inear modē estimated from sample data.

\section*{Unit 6}

Upon successful completion of Unit 6 a student will be able to apply probability notions in the performance of statistical inferential proc̄eedures. The student will be sble to apply knowledge of probability dístributions and moments to compute confidence intervals and confidence levels using known random variabies. The student will also be able to construct hypothēes tests and specify significance levels for tests. The student will have learned to perform these operations on sing ié parameters such as the mean of a sample and on coefficients estmated in a multiple regrēsion equation.

\section*{Unit 7}

Upon successful completion of Unit 7 à student will be abié to recognize a situation requiring the use of a sample survey and to design and field a simplésurvey instrument: The student will also have developed a criticāl capacity permitting effective review of survey instruments ān rēsults̄ and wili bē āble tō compute élementary statistics to estimate precision in the case of simple random sampling. The student will also be able to identify features of more complicated probability sampling procéedures such as ciustē; stratified, systematic, or multistage sampling and will bé āble to assess their advantages and disadvantages In particular situations. The student will also be able to assess the benefits and disadvantages of various fielding methods such as face-toface, telephone, and mailed response interviēs
\[
\text { XVI.III. } 3
\]

QMPM
Unít 5
Reading Assignments
\begin{tabular}{|c|c|}
\hline Lecture & Assignment \\
\hline Lecture 5-0 & Mosteller, Rourke, and Thomas Chapter 3 Mueller, Schuessler, and Costner, Chapter il \\
\hline Lecture 5-1 & Tufte, Chapter 2 \\
\hline Lecture 5-2 & Mosteller, Rourke, and Thomas, Chapters 5 and 7 \\
\hline Lecture 5-3 & Draper and Smith, Chapter 2 \\
\hline \multicolumn{2}{|l|}{In addition, read the following articles in Tanur, et.al.:} \\
\hline \multicolumn{2}{|l|}{pages 102-11} \\
\hline . 164-75 & \\
\hline 212-19 & \\
\hline 244-52 & \\
\hline 372-84 & \\
\hline 407-15 & \\
\hline
\end{tabular}

\section*{Texts:}

Draper, N: and H: Smith; Applied Regression Analysis, New York: John Wiley \& Sons; 1966.

Mosteller, F., R. Rourke; and G. Thomas, Probability-with Statistical Applications; Second Edition, Reading, Massachusetts: AddisonWesley; 1970.

Mueller, J., K . Schuessier, and H. Costner, Statistical Reasoning In Sociology, Third Edition; Boston: Houghton Mifflin, 1977.

Tanur, jopet.al:; Statistics: A Guide to the Unknown; San Francisco: Hoiden Day; 1972.

Tufte, E. R., Data Analysis for Politics and Policy, Englewood Cliffs, New Jérsey: Prentice-Hall, 1974.

\section*{Prérequísíté Inventory}

Module III

This prerequisite inventory contains a brief introduction to the vocabulary and notation of elementary probability and set theory．if you are still uncertain about any of these concepts after reading the inventory，please consult a member of the teaching staff．

Probability is a measure of chance．Discussions of chance are by no means limited to the classroom．The weatherman often states that there \(\mathbf{i} \bar{s}\) a \(60 \%\) chance of rain，or a friend might remark that＂chances are I＇ll be home late again tonight．＂or，someone ease may state that it is likely that federal income tax will rise this year：
 up with a rigourous definition of probability．Mathematicians and philosophers cannot agree on single definition．One group of stats－ ticians believes in objective probability．Objective probabilities are derived from repeated observations of the happening that is in question． The long run relative frequency with which the happening occurs is taken to be its probability．For example；suppose you work for a health agency which is testing the effect es of red dye 非，a suspected carcinogen； on rats．You have tested red dye \(\overline{y 2}\) on 3000 identical rats．Five hundred of those rats have developed cancer．You conclude that the probability that the next rat to receive red dye 非2 will develop cancer is \(500 / 3000\) ，or \(1 / 6\) ．

Probabilities may be based on equally likely chances．The traci－ tonal examples of this type of probability are the tip of a coin and the roll of a die．When a coin is tossed．heads and tails are equally

UMPM
iqkely; each has probability i/2. The sides of a die are equaliy likely, so the probability that a particular síde wili appear is i/6. Suppose that we want to meet with some physicians in Buffaio to discuss thér opinions on malpractice insurance. We know that physicians are distributed unevenly across census tractes, tēt's assume that thēre are 1000 physicians, of which only i is in the first census tract. if we sélect the first physician that we meet with at random, then the probability ōf sélecting each particular physícian is equal, namely a in 1000 chance, \(\bar{a}\) probability of 001 . With only one physician in the first census tract, we can also say that the probability that our first physician is from that tract is :001: if there are 18 physicians in census tract two; then the probability that our first physician is from that tract is 0018 .

Another definition of probability is subjective or personal probability. Subjective probabilities are based on personal belief or professionai judgment: Not all statisticians accept the idea of subjective probability, būt some are willing to assign measures of chance to happenings that cannot be repeated to obtain a long-run frequency. In 1977; the secession of Nantucket and Martha's Vineyard from Massachusetts seemed possible. We cannot repeatedly put Martha's Vineyard and Nantucket甜 a position to sacede and count the number of times that they actually do secedé Nor is secession one of number of equally likely events. It may be possible, however; for us to analyze the existing conditions which affect the secession decision and to state our opinion that there is a \(20 \%\) chance that the islands will secede within the next ten years. This \(20 \%\) is an example of a subjective probability.

Statisticians do have a precise language for describing the happenings to which probabilities are assigned：An experiment is an act that can be repeated under given conditions．In the examples above，testing red dye \＃2 on a rat；flipping a coin，rolling a die，and selecting a physi－ cian to interview are all experiments．Secession from Massachusetts is difficult to repeat and is therefore not an experiment．

An experiment has one or more possible outcomes．We will rarely be interested in experiments with one outcome，since that outcome occurs with probability 1 （certainty）．The outcome of flipping a coin must be équther heads or tails：The outcome of giving red dye 非2 to a single rat must be either cancer or not cancer．The outcome of randomly selecting à physician from 1000 must be one of the 1000 physicians．

An elementary event is the outcome of an experiment．We will often be interested in more complex events which incorporate more than one outcome．These are called compound events．In the red dye 非2 example， we do not care whether or not a particular rát develops cancér．Ràther， we are interested in whether or not a sufficient number of rats develop cancer so that we can conclude that red dye 非2 is harmful．Süppose we have decided to conclude it is harmful if more than half of the rats get cancèr．This event，more than \(1 / 2\) of the rats develofing cancer；is a combination of the elementary events that 1501 or 1502 or 1503 ，and so on up to 3000 ，rats develop cancer．

A set is à collection of numbers or objects that can be groupéd together in some context．We may talk about the set of ali biack city managers or the set of lifétimes of General Motors automobiles：Thé élements of à \(\bar{s} \bar{e} t\) are lis̄ted between brackets \(\{j\) and are separaté by commas．A set of lifetimes of automobiles in months may look like
\[
\text { XVI.III. } 7 \quad 8!
\]
\[
\{68 ; 73 ; 79 ; 80 ; 83 ; 83,91\} .
\]

The possible outcomes of an experiment are often listed in set notrition. When this is done; the set \(S\) is called the sample space of the experiment. The sample space of the experiment of testing red dye 非 on one rat 13
\{cancer, not cancer\}.

The sample space of the experiment of testing the effects of red dye \#2 on 3000 rats is
\{no rats gèt cancex, 1 rat gets cancèr, 2 rats gèt cancer, 3 rats get cancer, ..., 3000 rats gēt cancér\}

In large setes containing an obvious progression; we use ... to stand for "and so forth up tó" foilowed by the final element in the set. The set
\[
\{1,2,3, \ldots\}
\]
is the sét of positive integers and is of infinite length. (There is no "finai" element.)
\(\bar{A}\) subsét of \(\overline{\bar{a}}\) set \(S\) is made up only of elements in \(S\). Subsets may contain all of the elements in \(S\) or \(\bar{a} \bar{n} y\) number of elewents less than the total number. The get which contains no elements is called the empty
 An event (see above) is a subset of a sample space.
XVI.III. 8
\[
803
\]

We may want to describe the unfon or the intersection of two or more sets. The intersection of sets consists of the elements which the sets have in comon. The symbol for intersection is \(n\). For example, consider \(A\) and \(B\) where \(A\) is the set of grades on a test in a ciassroom with computer-aided instruction and \(B\) is the set of grades on a imilar test in a traditional classroom:

A: \(\{80 ; 83 ; 86 ; 86 ; 89,93\}\)
B: \(\{62,70,79,83,89,90\}\)

Then \(\bar{A} \cap \bar{B}=\{83,89\}\)
The unfon of sets; symbolized \(u\), enumerates ail of the elements that appear in one or more of the sets. Referring to and \(\bar{A}\) above,
\[
A \cup B=\{62,70,79,80,83,83,86 ; 86,89,89,90,93\}
\]

We say that two sets, \(C\) and \(D\), are mutually exclusive if they have no élements in common. This is equivalent to the mathematical suatement \(C \cap \eta=\{\overline{\}}\). The set of \(\bar{U} . S\). Senators and the set of U.S. Representatives àt one point in time are mutually exciusive sēts.

Suppose that \(\bar{E}\) is some event which is \(\overline{\operatorname{a}}\) subset of the sāmple space S. Then the set \(\bar{E}_{\bar{j}}\) consisting of ail eiements in \(\bar{S}\) which are not in \(E\), \(\bar{i} \bar{s}\) canled the complement of E . Complements have the properties that
\[
\begin{aligned}
\{E \cap \overline{\bar{E}}\} & =\{ \} \\
\text { and } \quad\{E \cup \bar{E}\} & =S ; \text { the sample space. }
\end{aligned}
\]

We will be discus̄́ng the probability that a particular event occurs. The probability of an elementary event is the likelihood that the experiment wili resuit in that outcome: The probability associated with an entire sample space is 1.
\[
\text { xvi.iiti. } 980.4
\]

\section*{QRPM}

You will see different notations used to denote the probability of an event. The most common are p\{event; prłevent, \(P(\overline{e v e n t})\), and \(\operatorname{Pr}(\bar{e} v e \bar{n} t)\). When we roil one die, \(\mathrm{P}\{5\}=1 / 6\) and \(\mathrm{P}\{\) an even number \(\}=1 / 2\).

A population is a group of people (or things) specified by some chārāctēristic. A population may be àil people in the United States, 35 -year-old congresswomen from Pougheepsié, or men with income greater than \(\$ 50,000\). A sample is a subset of an entire population.

In Moduie III, we will use our knowledge of probability to generalize from samples to populations. Probability will enable us to quantify the uncertainty about the population which ís due to our sampling, i.é., our observation of only part of the set consisting of all members of the population: Unless we anàyze the entire population, there will always be uncertainty:

A sample is abatch of data; and we continue to use measures of location and scale that were discussed in Module I. In particular, the sample mean, \(\bar{X}\), and the samplé standard deviation, \(\bar{B}\), will bé used. It is à usefū property of sampling that as the size of à sample increases, both in absolute number and relative tc the population size; the sample mean approaches the mean of the population.

A final concept with which to be familiar béfore proceading to Module \(\bar{I} \bar{I} \bar{\prime}\) is the difference between continuous and discrete. A discrete variable may cake on one of ánite or countably infinitéset of values. The narber of black city managers and the set of positive integers are examples of discrete variābies. A continuous variable may take on values from a set consisting of an interval of the real number line. Length of a partioular road, average height of European men, and ail numbers between 0 and 1 àré examples of continuous variables.

Homework
Prerequisite Inventory, Module III

Questions i-10 refer to sets à through D.
A: \(\{0,1,2\}\)
B: \(\{1,3,5,7,9\}\)
C: \(\{2,4,6,8,10\}\)
D: \(\{1,2,3,4,5\}\)
List the elements of the following sets (in set notation):
1. AUD
2. \(A \cap D\)
3. \(B \cap D\)
4. BnC
5. BUC
6. ( \(\bar{A} \cup \bar{D}) \cap(A \cup C)\)
7. ( \(\bar{A} \cap B) \cup(A \cap C)\)
8. AUBUCU
9. ARBOD

10: (BND)U(CUA)

In questions 11-15; give the sample space of the described experiment.
11. Annual family income for a family in Detroit, given that the head of the household is chairman of the board of a major automobile manufacturing company.
12.. Lifetimes (in years) of individuals in Washington D.C. who died between 1960 and 1970 from a heart attack.
13. The number of cars passing a building in a one hour period.
14. Percentage of black students in your master's class.
15. The number of women in a room of 10 people

QRPM

Homework Solutions
Prerequisite Inventory, Module III
1. \(\{0,1 ; 2,3,4,5\}\)
2. \(\{1,2\}\)
3. \(\{1,3,5\}\)
4. \{ \}
5. \(\{1,2,3,4,5,6,7,8,9,10\}\)
6. \(\{0,1,2,4\}\)
7. \(\{1,2\}\)
8. \(\{\overline{0}, 1,2,3,4, \overline{5}, \overline{6}, 7,8,9,10\}\)
9. \{1\}
10. \(\{\overline{0}, \overline{1}, 2 ; 3 ; 4 ; \overline{5}, \overline{6} ; 7 ; 8 ; 10\}\)

11: Set contains 3: incomes (one for GM, Chrysler; Ford) : each element in excess of \$200;000
12. Sat contains positive integers between 20 and 90 (approximately) with most elements between 40 and 60 .
13. \([0 ; 1 ; 2 ; . .\).
14. íf ciass has \(N\) students, set is \(10 \% ; \frac{1}{N} \times 100 \%, \frac{2}{N} \times 100 \%, \ldots\), \(\left.\frac{\mathrm{N}-1}{\mathrm{~N}} \times 100 \%, 100 \%\right]\)
15. \([0, \overline{1}, 2,3, \ldots, 10]\)
\[
807
\]

Lecture 5-0. Introduction to Unit 5

Introduction to Unít 5, Probabilíty and Sampling

\section*{Lecture Content:}
1. Introduction to objectives, problem, and notation for Unit 5
2. Discussion of a quantifícation of the notion of uncertainty

\section*{Main Topics:}
1. Specific Introduction to the Objectives of Unit 5
2. Presentation of general problem of Unit 5
3. Notation for Unit 5
4. Definition of Probability
\[
80 \mathrm{~s}
\]

Topic 1. Specific Introduction to the Objectives of Unit 5
I. Questions to be answered in Unit 5
1. What is probabillty?
a. In à frequency context, the probability of an event is the proportion of time that the event occurs on a lārge number of trials; e.g., p fhead on a coin toss
b. However, probability is also a subjective notion and may vary from person to person -- chance, uncertainty, probable; likelithood of occurrence
2. How do we calculate and manipulate probabilities?
a. We define simple rules for finding probabilities of équally likely outcomes
b. Intersections and unions of events are easily visualized via Venn diagrams; and the corresponding probabilities found
3. What is a random vartabie, and how do we determine and utilize its probability distribution?
a. A random variabie is a variable whose specific value is not known with certainty
b. A random variabie is characterized by its probability distribution, which gives probabilities that the variable will have certain values.
c. The probability distribution allows us to make certán statements about the random variable. For example, we may calculate the average value of the random variabie.
4. What are some examples of random variables? [Random variables (usualiy) are eithèr discrete or continuous.]
a. Discretè Random Variāblēs
i. Discrete random variables take on a finte or countabiy infinite number of values; e.g., number of customers arriving at à supermarkèt between noon and 1 PM on a given day (Poisson)
ii. Some discréte random variables inciude Biñomial Poisson Uniform
b. Continuous Random Variablēs
i. Continuous random variāles tāke on any value in some interval of the real line; e.g., heights of individuals (zGaussian)
ii. Some continuous random variables include

Exponential
Rectangular
Gaussian
\(\bar{x}^{2}\)
5. How do we apply probability theory in data analysis?

We discuss regression analysis with probabilistic assumptions for errors
II. Skills to be mastered in Unit 5
1. Quantification of uncertainty through the concept of probability
2. Identification of the mathematical formulae of various sampling or probability distributions
3. Recognition of several types of random variables, and the ability to compute their expectations
4. Assessment of goodness of fit in multiple regression by utilization of probability.

\section*{Topic 2: Introduction to the Problems of Unit 5}

\section*{I. What is probability?}
1. Experiment: An activity or procedure involving alternative outcomes. Each hàs an assoclated probabilfty. Repeatable under given conditions.
Example: Flip a fair coin 10 times and let \(X=\) number of heads.
2. Each outcome is an event, either elementary or a combination of elementary events. All possible ourcomes for an experiment is the sample
3. State that bāsed on these 10 triā1s; \(\operatorname{Pr}\{\) head \(\}=x / 10\)
4. Note that this definition of probability is based on an infinite number of trials; only as \(n \rightarrow \infty\), will \(x / n \rightarrow 1 / 2\)
II. How do we calculatē probabilitiēs?
1. Let \(A\) be an event
\[
\text { Pr\{A\} must be between } 0 \text { and } 1 \text {, inclusive. }
\]

Intuitive: 0 means event doesn't occur; 1 means event does.
2. If the universe \(E\) set of all possible outcomes contains the events \(A_{1}, A_{2}, \ldots, A_{n}\), then \(\operatorname{\Sigma Pr}\left\{A_{1}\right\}=1\).
3. By using Venn diagrams we can compute probabilitíes óf intersections; unions, etc. Intersection is "and", Union is "or"
III. What are examplēs of random variables?
1. Number of heads in \(n\) tosses of a coin \(=X\) \(X\) is a binomial random variable
2. Number of arrivals of airplanes at an airport in a spectife hour \(\bar{x} \mathrm{X}\) \(X\) is à Poisson random variable
3. Number obtained on a single roll of a die \(\bar{X}\) (either \(1,2,3,4,5\), or 6 ) \(X\) is a Uniform random variable
4. Waiting time between arrivals of customers in a superwarkè \(=\mathrm{Y}\)
Y is an exponential random variable
5. Random variabies occurring in nature, è.g. intelifgence scores, lengths of rose petals are (usualiy) assumed to bé Gaussian.
IV. Conciusioñ
1. Need methode to recognize which distribution a batch of data came from
2. Need to be weil versed in mathematical probability

QMPM

\section*{Topic 3. Introduction to the Notation of Unit 5}
I. We let capital letters such \(\overline{\mathrm{a}} \overline{\mathrm{B}}, \overline{\mathrm{X}}, \mathrm{Y}, \mathrm{Z}, \ldots\) denoté random variables
II. Small lettérs \(\bar{x}, \bar{y}, z ;\). . denote realizations of these variablés; \(\bar{e} . \bar{g} \cdot\), we write \(\operatorname{Pr}\{\bar{X}-x\}\), where \(x\) is an element of the sample space of \(x\).
1. Read \(\bar{a} \bar{s}\) "the probability that \(X\), the random variable, will take the value \(x^{-"}\)
2. "Realization" indicates à value actually taken by a random variable

\section*{Topic 4. Probability}
\(\bar{I}\). In thís section, we défine some basic notions of probability.
1. Probability is defined for events; or occurrence of a certain phenomenon: Events are notated \(A, B, \ldots\)
a. A head on a single coin toss is an event
b. 3 heads in 10 coin tosses is an event
c. A leaf density of 6.93 is an event, Note \(\bar{P}\{A\}\) between 0 and 1
2. The collection of all possible events, relative to a specific experiment; is called the sample space or universe, \(S=\left\{A_{1} ; A_{2} ; A_{n}\right\}\) It depends on the definition of the experiment. \({ }^{n}\)
a. Events are subsets of \(S\)
b. If we toss a coin 20 times and record the number of heads; then \(S=\{0,1,2, \ldots, 19,20\}\) heads
c. \(\quad \Sigma P\left\{A_{i}\right\}=1\)
3. Probability of an event A is the number of times the event occurs (or the number of successes) divided by the total number of triais; for a lăge number of trials \(\dot{P r}^{\{A\}}=\frac{\text { number of successes of } A}{\text { total number of outcomes }}\)
i.e.; it is a reiative frequency.
4. Suppose we have 2 events \(A\) and \(B\). The event \(\overline{=} \bar{A} f \bar{B}\) is the union of \(\bar{A}\) and \(B\), and is the occurrence of either \(A\) or \(B\) or both \(A\) and \(B\)
5. Suppose we have 2 events \(\cap\) and \(E\). The event \(F=A \cap E\) is the intersection of \(D\) and \(E\), and is the occurrence of both \(\bar{D}\) and \(E\).
6. \(\bar{P}\{C\}=P\{A \cup B\}=P\{A\}+P\{B\}-P\{A \cap B\} ;\) if \(A\) and \(B\) are disjoint then \(P\{A \cup B\}=P\{A\}+P\{B\}\)
7. \(\bar{A}\) is the complement of \(A\)
\(\overline{\mathbf{P}}\{\overline{\mathrm{A}}\}=\mathbf{1}-\overline{\mathbf{P}}\{\overline{\mathrm{A}}\}\)
8. If 2 events are independent, or hāve nothing to do with each other, then \(P\{A \cap B\}=P\{A\} P\{B\}\)

\section*{QMPM}
9. In general; when 2 events are not independent; \(P\{A \mid B\}=P\{A \mid B\} P\{B\}\)
where \(\mathcal{P}\{A \mid B\}\) is the conditional probability, read \(A\) given B.
10. Note that \(\bar{P}\{A \mid B\}=P\{A \cap B\} / P\{B\}\)
II. Discuss example

\title{
Lecture 5-0 \\ Transparency Presentation Guide
}

\section*{Lecture Location Outine}

Topic 1. Section II.
i.

\section*{Topic 2.}

Section II. 3.

Séction III. 1.

Topic 4. Section II.

Section II.

Transparency Number

Transparency Description

1

2

3

4

5

Skills to be mastered

\section*{Venn Diagrams}

Examples of Random Variables

Experiment to Introduce Probability
Probability Calculations

Sxulls to be mastenced in unit 5
1. Quantification of uncutainty
2. (dentification of vasious sampling distributions
3. Recognition of sevesal nandom variattes
4. Goodness of fit in muetipte regression via probabilety theory

examples of Randon variabts
1. Nimbir of heado an ntosses of a cuin \(=X\) \(X\) is a binomed nandom varialle
2. Number of aurvals of auplanos at Logen entrinetional treport on a spocific hown \(=X\)
\(X\) is a Bisson nendom vaucale
3. Numbie grainal on a sinut noll of a
dre \(=X\) (eister \(32,3,3,56)\)
\(x\) is a unifing nendom vacuatic
4. Waiting the betwan arivats of custoncis at Grant Eagk, Contera acij, y \(y\) is an exponentel nandon vevable
5. Rendom vaicitrs ocuving in nathe, e.g. untellijence moesmes, ingitus of rose petats, ase (xscurluy) ascumad to te Gavsion

819

Expoiment to inñoduce reocoluly
There ine 1000 intervicmats in town staterty. yow entuvien eack and necond whather whey are pan (income epovaly tedel) and wherthor they heve a. hagh sethoil education.
The results:
\begin{tabular}{c|c|c} 
Noor \\
Notpoor
\end{tabular} \begin{tabular}{cc} 
NS Mad & Not Nad \\
50 & 250 \\
500 & 200 \\
\hline 550 & 450 \\
\hline
\end{tabular}
entrids ae mubtie of pople with spoceficd charactaistes

Event:
\(A\) = por, hegh scheol grad
B - Boor, not hugh school giad
\(C\) a Not poor, dega school Miod
\(D\) - Not poor, not tigh sencol grad
\[
\begin{aligned}
& P\{1\}=50 / 000=.05 \\
& P\{B\}=250 / 1000=.25 \\
& \text { P\{C\} }=500 / 1000=.50 \\
& \text { P\{ } 0\}=200 / 1000=.20
\end{aligned}
\]

Experiment continued
Sypose we diow die penson at rendom.
P\{ Poor and Not h6l schial God\}= .25 [entasection]
Note sump
P\{for 3 P\{Not thol Schail God\} \(=.30 \times .45=\) so events ase not independent
Zuions
Pf Rer U 145 grad \(5=.30+.65-.05=.80\)
P\{Not Brer U H5 grad\} \(=.20+.55-.5=.75\) ete.

Conctitional Reobebuly
\[
\begin{gathered}
\text { P\{foor / Not Aght selios/grad }\}=\frac{.25}{.45}=.56 \\
P\{\text { Not Por/High Schod grad }\}=\frac{.50}{.55}=.91 \\
821 \\
5.0
\end{gathered}
\]

\section*{Lecture 5-1. Sampling Distributions}

Sampling Distributions: Notion of random variables introduced by means of a sampling experiment.

\section*{Lecture Content:}
1. Discuss discrete and continuous random variabies, numbers determined by the outcome of an experiment
首。
2. Simple random sampling experiment from three probability distributions

\section*{Main Topics:}
1. Random variables
2. Sampiing Expērment
3. Sampling Distributions

Topic 1. Random variablēs
I. Basic Issue: Experimentālly determined abers
1. Rāndom vāriātion arises in nearly al social and physical science expēriments
a. Wē may wish to measure the numb of raciai dísorders occurring in inner city high schools in Boston
b. Ōr we may wish to determine the boiling point of a cērtain chèmicāl compound
c. In both instances, the computed quantities wili vary from school, to school, or replication to replication
2. It is important to quantitatively define the nature of variation in our experiments
3. We describe this variation in probabilistic terms, to indicate our lack of cērtainty in the outcomes of the experiments
II. Problem: How do we characterize this variation?
1. Probābilitiēs are defined only for iong -run frequencies of events, where the experiment has been repifcated many, many times
2. It is usually not profitable for us to conduct our experiments for policy decisions the required number of times
a. Generaliy, we are lucky to have more than 100 replications of an experiment, because of either lack of time and money; or the smali size of the sampling space
b. What limited inferences can we make on fewer than 100 numbers?
c. Stem-and-1eaf displays indicate the nature of the variation, but rarely do they mimic the appearance of a known distribution.
3. Example illustrates this problem
III. Solution: Attempt to describe the random nature of the variable by one of the weli-known probability models
\[
8{ }_{2}^{2}
\]
XVI.İİ. \(\overline{\mathbf{2}} \overline{8}\)
1. Essē̄tially, we borrow strength from stātistics and assume that the variable in question follows a known probability model
2. This approximation is reasonable in many instañes; however, we must remember that it is just an approximation
3. The stem-and-leaf display is our most powerful analytical tool in determining which model to assume

\section*{IV. Definitions}
1. A random variable is a variable whose value is a number determined by the outcome of an experiment
2. If \(X\) is a random variable; with possible values \(x_{1}, x_{2}, \ldots\), \(x_{n}\); and associated probabilities \(f\left(x_{1}\right) ; f\left(x_{2}\right)\), ..f \(f\left(x_{n}^{2}\right)\). then \(f\) is called the probability function of \(X\).
3. A random variable is like any other variable except that we know more about the random variable, namely the probabilities associated with its realizations
4. Random variables are either discrete or continuous (or sometimes a combination of these two)
a. Discrete random variables take one of a finite or countably infinite sét of values
b. Continuous random variables take any value from an interval of real numbers
5. Random variables may also be vector-valued as in muitiple regression
6. In the next lecture we discuss some special random variables at length

\section*{Topic 2. Samping Experiment}
I. Basic issue: How can we best learn about random variation
1. We can coliect many data sets, all of which have a random nature
2. However, it is more expedient to construct random numbers in a controliē "statistical laboratory"
3. We sample from \(\frac{1}{\text { distributions-Gaussian, Rectangular }}\) Exponential-and study the nature of the variability of several familiā statistics
II. Problem: How do we pērorm this controll " experiment
 Y bé a random variablē with à rectangular distrínution z \(\overline{\mathrm{b}} \mathbf{e}\) a random variable with an exponential distribuモ壬on
2. \(X\), \(\overline{\text { and }} \overline{\mathrm{d}} \mathrm{Z}\) are continuous random variables, witi probability functions ās shown
3. We shail draw 100 "samples" from each of these distributions; with sample size 20 , by using a pseudo-random number generator
III. Solution: Study variation in our favorite statistics
1. For each sample, from each distribution, we compute \(\bar{X}, S^{2}\), M ; and \(\Delta \mathrm{H}\)
2. Thus we have 100 sample means from
a. Gaussian distribution
b. Rectangular distribution
c. Exponential distribution

Similarly for sample variances, medians; mídspreads
3. We make a stem-and-1eaf of each set of numbers and study the variation
4. Questions to be answered:
\[
\overline{8} 2 \overline{5}
\]
XVI.III: 30
a. How much variability?
b. Is variability of a statistic constant over distributions?
c. Can we characterize the variability mathematically?

Note: Discuss how this sampling experiment might arise outside of our "statistical laboratory"

\section*{IV. Experiment}
1. Sampling distribution of \(\overline{\bar{X}}, \overline{\bar{Y}}, \overline{\bar{Z}}\)
à. Notē sybmetry
b. Batches appear quite well behaved, especially Gaussian
2. Sampling distribution of Medians
a. Also symetric, and, except for Exponential, well behaved
b. Spread is larger
3. Sampling distribution of \(s_{\bar{x}}^{2}, s_{\bar{y}}^{2}, s_{z}^{2}\)
a. Note skewness; to the larger values
b. Rectangular, not very varied
4. Sampling distribution of midspreads
a. Also skewed; but not as much as \(\mathrm{s}^{2}\)
b. Less varied; except for rectangular
5. This accords well with theory
1. Sample Mean - Gaussian by important Central Limit Theorem as \(\mathrm{N} \rightarrow \infty\)
2. Med́an Gaussian, but with larger variance
3. Sample Variance - \(\chi^{2}\), a skewed distribution
4. Midèreà - Gaussian (1)
\[
826
\]

Tränsparency Prēsentation Guide


Lectuse 5.-1

Sompling Distritutions: Notion of condow vouthon enthodicer by means of a sampling expesiment

Locture Content:
R Discus: discuct and continurus eandom vasuans: numbens determined by she onteare of an expesimont
2. Simpir neñaber sempling experiment
3. Several important sampung distictuntons

Main topers:
a Rondón vancibtos
2. Sompling axpesimst
3. Sempling destritsmons

Blify Queston: Should instuction in torcion tunquapes be hajpod fom hergh sehool cucrilulum, in ecrtain ecty 3 dure to toce of interest by she sitadicns?

These ase 19 hesh schoots on the eety. In \(1975-\mathrm{C}\), He precntages of Eludiont sating.


Now to we chanetanje this varetion?
What is the reselfatigfurctin of the ropdon
variable \(x=\%\) students studying foresn nnsacse?

Definitions
Rantom varialte a variable whare value of a numbir detesmined by the oufcome of on cxpcriment

If \(X\) is nandow vasestc, wrth poseck outcomis \(x_{1}, x_{2} \ldots x_{n}\), and assocuatod probabilities \(f\left(x, 3, f\left(x_{2}\right), \cdots, f\left(x_{n}\right)\right.\), sten fis rauled the esobeleley finction

Prsuet nondon vanaiors fakes on one tat fincte de rocintably infinete

Cantinugus nondom vanobk ofares a value from a set of infonet shec

Some. Continuous Rendom Vaxebles
1. \(X\) ganssian \(x \in \mathbb{R}\)

2. Y Rectangular \(0 \leqslant y \leqslant 1\)


XVI.II主: 36
\[
\begin{aligned}
& \text { SAMPLING DISTRI BUTIINW of } \bar{X}, \bar{y}, \bar{z} \\
& \text { Stem and Leaf Displays }
\end{aligned}
\]
-4
-3
-2
-1

9
\begin{tabular}{|c|c|c|}
\hline & RECTANGULAR & EXPONENTIAL UNIT \(=10^{-2}\) \\
\hline 3. & . 899999 & 51 \\
\hline 4 & 1111 & 51 \\
\hline \(\uparrow\) & T 29223 & 614 \\
\hline F & F 44858505 & 6.5699 \\
\hline 3 & 3 ces6666977 & 7 012 2394 \\
\hline 4 & 88888839999 P99 & 7. 65699 \\
\hline 5 & 0000000 111111 & 8 11198334 \\
\hline T & T 2axamaxa \({ }^{\text {a }}\) & Q 8779894979 \\
\hline & f 9474035 &  \\
\hline 5 & 56679 & 9. 556678888999 \\
\hline \(\overline{5}\) & 8889 & 10.00119344 \\
\hline 6 & & ¢ 97979898888 \\
\hline \(T\) & 23 & - \(00 \%\) \\
\hline & 17 & n. 807 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{HI}} & B 1 \\
\hline & & 12. 719 \\
\hline & & 130 \\
\hline & & 12.8799 \\
\hline & & 4 1112 \\
\hline
\end{tabular}

98841
666554
77943110
98766439210
8987766665553362228100
98766439210
98887766665533352292100 0012922944969 012855679999
-007 25079
2366
1
12


12

Ilau

EXPONENTIAL

[50.]
.

QPPM

\section*{[56]}

\section*{Number Summaries}
\begin{tabular}{|c|c|c|c|}
\hline & Cussion & Rectangiar & Exponential \\
\hline Min & -0.50 & 0.39 & 0.51 \\
\hline LH & -0.17 & 0.46 & 0.83 \\
\hline Hed & -0.03 & 0.80 & 0.17 \\
\hline \(U H\) & 0.14 & C. 54 & 1.08 \\
\hline Max & 0.52 & 0.66 & 3.42 \\
\hline Mean & -0.02 & 0.50 & 3.98 \\
\hline Stod. Dev & 0. \(2 \overline{3}\) & 0.6 & 0.21 \\
\hline Med & -0.03 & 2.50 & 0.97 \\
\hline \(\Delta H\) & 0.31 & 0.08 & 0.25 \\
\hline
\end{tabular}

5-1

\section*{[ba]}

Sampling Distributions of Median stem-ant-Leaf Display


QRPM

\section*{Nurber Summaries}

Min
\(L H\)
Med
\(U H\)
Max
Mean
Std. Dev.
ved
A

Gauscian
-0.\%
\(-0.21\)
\(-0.02\)
0.15
0.76
-0.02
0.28
-0.02
0.36

\section*{Rectangentar \\ 0.25 \\ 0.43 \\ 0.49 \\ 0.55 \\ 0.73}
0.50
0.10
0.49
0.13

Exponential 0.33
0.54
0.67
0.79
1.36
0.69
0.22
0.67
0.25
\[
837
\]
\[
5-1
\]

Sampling Distributions of \(S_{x_{2}}{ }^{2}, S_{y}^{2}, S_{2}^{2}\)
[7a]


\section*{Gancion}

NI \(\left\lvert\, \begin{array}{ll}1.95 & 9.00\end{array}\right.\)


\(5 \%\)
[7b.]

\section*{Nuaber Summeries}
\begin{tabular}{|c|c|c|c|}
\hline & Grucsion & Rectangular & Expenential \\
\hline Min & 0.38 & 0.04 & 0.19 \\
\hline LH & 0.75 & 0.07 & 0.62 \\
\hline Med & 0.88 & 0.09 & 0.88 \\
\hline UH & 1.21 & 0.10 & 1.32 \\
\hline Max & 2.00 & 0.12 & 2.70 \\
\hline Moan & \(0 . \%\) & 0.08 & 0.99 \\
\hline Sted.Der & 0.33 & 0.02 & 0.56 \\
\hline Med & 0.88 & 0.09 & 0.88 \\
\hline \(\Delta \|\) & 0.46 & 0.03 & 0.70 \\
\hline
\end{tabular}
Sampling Distribution of Midspread, \(\Delta H\)

H2d \(1.99 \quad 2.16^{\circ} \quad 2.28\)
[8a]
8.11

\section*{[8b]}

\section*{Number Summaries}
\begin{tabular}{lccc} 
& Gaussian & Rectonguar & Expenential \\
Min & 0.51 & 0.25 & 0.46 \\
LH & 1.14 & 0.41 & 0.78 \\
Med & 1.31 & 0.47 & 1.00 \\
UH & 1.52 & 0.56 & 1.25 \\
Max & 2.29 & 0.69 & 2.28 \\
Mean & 1.34 & 0.48 & \\
SH.Der & 0.33 & 0.10 & 1.06 \\
Med & 1.31 & 0.37 \\
AH & 0.38 & & \\
& & 0.14 & 1.00 \\
& & &
\end{tabular}

813
\[
5-1
\]
XVI.III. 44

Theortical formulae for Sampling Dishbartion
\[
\begin{aligned}
& \text { Sompt Mean } \bar{x}\left\{\begin{array}{l}
\text { Gausion } \\
\text { Rectorsahor } \\
\text { Exponantide }
\end{array}\right. \\
& \text { (excuet if data. } \\
& \text { are (avisian) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { complos } \\
& \text { cexact if data } \\
& \text { are Gaussian) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Cexpact of daba } \\
& \text { are Ganssuan) }
\end{aligned}
\]

\section*{Lecture 5-2. Expectations of Random Variables}

TR
Expectations of random variables: Mathematical formulae for random variables; and means and for means and variances of these variables
(1)

Lecture Constant:

1. Define Binomial, Poisson, and Un,
the contexts in which they occur
2. Define Exponential, Rectangular, and Gaussian random variables
 3. Discuss mathematical expectations variances, and independence

\[
20 x+3 \cos 9
\]


\section*{Main Topicē:}
1. Discrete random variables \({ }^{2} \sin\)


4. 8.454
2.3. Moments and other properties of these variables (raxamac -anis


4.3

815

सיफ

\section*{Roolc 1: Discrete Random Variables}
I. Basic Issue: When can a batch of data be characterized by one of the special types of discrete random variables?
1. Recaī that discrete random variables take on only a finite or countably infinite number of values (one-to-one association with the integers)
a. For example \(X=\) number of Orientals in a census tract, has sample space \(S=\{0,1,2, \ldots, N\}\), where \(N=\) total population of tract
b. ór \(\bar{Y} \equiv\) number of rides taken on pat busses in 1976, has \(S \equiv\{0,1,2, \ldots\}\), a countably infinite set of possible values
2. We deal here with discrete random variables in general
a. \(X=\) discrete random variable
b. S sample space of \(X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\) where \(n\) may be infinitely large
c. \(f\left(x_{i}\right)=P\left\{X=x_{i}\right\}\) is the probability function of \(\bar{X}\)
d. The \(x\) are called "mass points", and \(\bar{f}\) a "probability mass function", since \(f\) gives positive probability or weight ( \(=\) mass) to only the \(x_{i}\). ( \(f\) is also simply called a probability function)
3. We shall discuss when \(X\) can be described with one of our special mass functions; i:e:; when is \(\mathbb{X}\) Binomial; Poisson, or Uniform
II. Problem: With only a few realizations of \(X\); what can we say about the discrete random variable?
1. Occāionally we are able to take several samples (record several observations) of \(X\)
a. A stem-and-leaf display should be made of this batch, and the shape studied quite closely and compared to the shapes shown later in this lecture
b. If we suspect that \(X\) is either Binomial; Poisson; or Uniform, compute \(\bar{x}\) and \(s^{2}\) to compare with the "theoretical" values of these quantities
2. But if we have no observations on \(X\), we must use whatever knowledge we have availabie about \(X\) to characterize its random nature
III. Solution: Triree epecial random variables to use when appropriate
1. Binomíā random variable
(2)
a. Assume añ experiment involves N trials or observations, each trial being "independen:" \(\overline{\mathrm{f}} . \overline{\mathrm{e}}\). distinct from the other \(\mathrm{N}=1\) trials
b. Assume each of the in trials has only 2 outcomes; a " 0 " or " 1 " (which could stand for any pair of mutually exciusive outcomes)
c. Lét \(p=\) Probability of an occurrence of a 1 on a singie trial (this does not vary from trial to triaí)
d. Then \(X=\) number of 1 's on \(\bar{N}\) trials is a Binomial random vāriāble
e. Mass function \(f(\bar{x})=\binom{N}{\bar{x}} \bar{p}^{-\bar{x}}(\overline{1}-\bar{p})^{\bar{N}-\bar{x}}\)
2. Poisson rāndomil variable
a. (Rat ents \(p \approx 0\), approximatyon of binomial) Aāsume a fixu interval of time or space
b. Consider a sfocific type of event or occurrence in the intērval
c. Let \(\lambda\) (lambda) be the average (mean) number of events that occur in the interval
d. Let \(\bar{X}=\) number of events that occur in the intervā is a Poisson Random Variable
e. Mass function \(f(x)=\frac{\bar{\lambda}^{x} e^{-\lambda}}{\bar{x}!}\)
3. Uniform rancom variable
a. Assume an experiment with àmple space \(\mathrm{S}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right.\); \(\left.\mathrm{x}_{\mathrm{n}}\right\} ; \overline{\mathrm{n}}\) finfte.
b. If each \(\bar{x}\) equally likely to occur, then \(X\) is \(\bar{a}\) untform random variāble
c. Mass function \(f(x)=\frac{1}{n}\)
d. an numbers are realizations of unfform random variables.
\[
8.1 \%
\]

Topic 2. Continuous Random Variables
I. Basic Issue: When can a random variable be continuous?
1. In general, all measurements are discrete-there is a smallest possible fractio: "hat we can measure.
2. However, the thing measured is theo etically continuous
3. Continuous random vàriāblēs may hāvé symmētric, skēwēd, or ēvén flat probability functions
a. \(Y \equiv\) continuous random variable
b. \(S=\) sample space of \(\bar{Y}=\{\bar{y} \mid a \leq y \leq b\}\), where a sut \(b\) are any Real numbers
c. \(f(y)\) is called the density function of \(Y\), since the probability has ben smeared over an interval (a,b), and every smaller interval has a chunk of probability
II. Problem: When can we assume that a specific continuous random variable can be characterized by one of our special donsity functions
1. We must use our intuition about the range of values of \(Y\) and the shape of empirical realizations Foreknowledge-and ch. • sensitivity
2. I - san prove that \(Y\) is either Gaussian, Rectangular, \(c\) ixf \(_{r}\) antial, then we nave found a very important result
III. Solution: Specific continuous rariom variables
1. Gaussian (Norma1)
a. The "well-behaved" distribution of single batches
b: Random variable is symmetric, and takes on values between \(-\infty\), and \(\infty\)
c. Important to notice the tails, and make sure that they are not too fat.
d. There are many bell-shaped curves: e.g., Cauchy--\(\bar{f}(\bar{y})=\left[\pi\left(1+y^{2}\right)\right]-1=t h i c k\) tailed. \(\mu \equiv \bar{\infty}\), no mean (expectation), integrāl doēsn't converge
\[
818
\]
e. Density function of Gausian
\[
\begin{aligned}
& f(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-1 /\left(\frac{y}{j}\right)^{2}} \text {, Y } \varepsilon R \\
& \mu(\text { mean }) \in \bar{R}, \quad \sigma(\overline{s t d} \cdot \operatorname{dev} \cdot)>0 \text {. }
\end{aligned}
\]
2. Rectangulat
(9)
a. Flat over an interval (a,b)
b. Density function
\[
\dot{f}(y)=\frac{1}{b-a}, \quad \bar{a} \leq \bar{y} \leq b
\]
3. Exponential (Waicing time)
a. Waiting times are invariably exponentáliy distributed
b. Density Eunction
\[
\begin{aligned}
& \bar{f}(y)=\bar{\theta} \mathrm{e}^{-\theta \mathrm{y}}, \overline{\mathrm{y}} \geq \overline{0} . \\
& \theta^{-\overline{1}} \bar{m} \text { average (mean) waiting time } \quad \bar{\theta}>0
\end{aligned}
\]
\[
8.19
\]

Topic 3. Moments and other properties of these variables
I. Basic issue: How can we summarize the random quality of these variables?
i. Whàt ís the average, ō typical; vaiue of a random variable (in tēems ōf lōng term results of repeated experiments)

2: What is the variance of a random variable?
3. The mean ( \(\mu\) ) and variance ( \(\sigma^{2}\) ) of a random variable \(\bar{x}\) are uséfui and easíly computed summarizations of \(\bar{x}\)
íf. Problem: How do \(\overline{\mathrm{X}}\) and \(\mathrm{S}^{2}\) compare to \(\mu\) and \(\sigma^{2}\)
1. Suppose we have \(N\) sample observations on \(X\) and compute \(\overline{\mathrm{X}} \mathrm{an} \overline{\mathrm{a}} \mathrm{S}^{2}\)
2. Then \(\bar{X}\) estimates \(\mu\) and \(s^{2}\) estimates \(\sigma^{2}\)
3. Oniy as \(N \mp \infty\) does \(\overline{\mathrm{X}} \rightarrow \mu\) and \(s^{2} \rightarrow \sigma^{2}\); i.e. only in very iarge samples are the sample estimates identical to the population values
4. Remember our sampling experiment and the way the sample quantities varied about the true values
III. Solution: How to compute \(\mu\) and \(\sigma^{2}\)
1. \(\mu \equiv \mathrm{E}(\bar{X})-\) read "expected vāue of \(\bar{X} "==\bar{i} \bar{s}\) the first moment of the random variable

\(\mu \equiv f \bar{x} f(x) d x\), if \(X\) is continoous
2. \(\quad \sigma^{2} \equiv E\left((X-\mu)^{2}\right)\) - read "Expected Value of \((X-\mu)^{2}-\) is the second moment; about the mean, of the random variable
\(\sigma^{2}=\sum_{i=1}^{p} f\left(x_{i}\right)\left(x_{i}-\mu\right)^{2}\), if \(X\) is discrete
\(\sigma^{2}=f(\bar{x}-\mu)^{2} f(x) d x\), if \(X\) is continuous
3. Examples
a. Discrete
\[
850
\]

UMPM
i. Binomial
\[
\bar{\mu}=\bar{N}_{p} \quad \sigma^{\overline{2}}=\mathrm{Np}(1-\overline{\mathrm{p}})
\]
ii. Poisson
\[
\mu=\lambda \quad \sigma^{2}=\lambda
\]
iii. Uniform
\[
\begin{aligned}
\mu & =\frac{1}{n} \sum_{i=1}^{n} \bar{x}_{i} \\
\bar{\sigma}^{2} & =\frac{\overline{1}}{\bar{n}} \sum_{i \overline{=1}}^{\bar{n}}\left(\bar{x}_{i}-\bar{p}\right)^{2}
\end{aligned}
\]

Note that these are not sample quantities
b. Continuous
i. Gaussian
\[
\mu=\mu \quad \bar{\sigma}^{2} \equiv \bar{\sigma}^{2}
\]
ii: Rectangular
\[
\mu=\frac{1}{2}(\bar{b}-\bar{a}) \quad \bar{\sigma}^{2}=\frac{1}{12}(\bar{b}-\bar{a})^{2}
\]
ifi. Exponential
\[
\mu=\theta^{-1} \quad \sigma^{2}=\theta^{-2}
\]

551

Lecture 5-2
Transparency Presentation Guide
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Lecture \\
Outliñe \\
Location
\end{tabular} & Transparency
\(\qquad\) & Transparency Description \\
\hline Beginning & 1 & Lecture 5-2 Outline \\
\hline \multicolumn{3}{|l|}{Topic 1} \\
\hline \[
\begin{aligned}
& \text { Section III } \\
& 1 .
\end{aligned}
\] & 2 & Biñoial Random Variable \\
\hline \(1 . \bar{e}\) & 3 & Binomiai Mass Functions \\
\hline 2. & 4 & Pósson Random Variable \\
\hline \(2 . \bar{e}\) & 5 & Poisson Mass Functions \\
\hline 3. & 6 & Uniform Random Vāriāble \\
\hline 3. d & 7 & Sample Page of Random Numbers \\
\hline \multicolumn{3}{|l|}{Topic 2} \\
\hline \[
\begin{aligned}
& \text { Section III } \\
& 1 .
\end{aligned}
\] & 8 & Gaussiān Rāndom Variable \\
\hline 2. & 9 & Rectāngulàr Rändom Variable \\
\hline \multicolumn{3}{|l|}{Topic 3} \\
\hline Section III & 10 & Māthēmātical Expectations \\
\hline
\end{tabular}

Lectenc 5-8

Expectatrans of Random Vevables:
Reobebilety finetions, meens, ind vavoners of severit Rendom vaverís

Leetric Content:
a Define Enomiah Bissan, end Elaghorm
2. Defond Expontanial, koctono pes and Gousuen nendas vavalests
- Diseuss mathematicou un letathone end veruancts

Main dopres:
1. Drscict Renidon vasiables
2. Ontrnuous Rendom varieblas
3. Maments of Random variad/s 853 [5-2]
XVI. III. \(5 \%\)

Binomial Randon Raciatc
- Experinent involves. \(N\) "independent". Bernöulli triaks.
- Each of the \(N\) suiks has 2 outromos,
- Let \(p=p \neq 1\}\) on each and every nual
- \(X=\) number of 1 's on she \(N\) nuats is a Dinomial ronction varialle

Nass function
\[
\begin{aligned}
& f(x)=\left(\frac{N}{x}\right) p^{x}(1-p) N \cdot x ; x=0, f \cdots \cdot N \\
& \left(\frac{N}{x}\right)=\frac{N!}{x!(N-x)!}=\frac{N(N-1) \cdots(N-x+\overline{1})}{x(x-1) \cdots 2 \cdot 1}
\end{aligned}
\]

Exampers
1) Whacts in \(N\) eoin Lossrs (clossic)
2) \#popi in a proup sue \(N\) wisk tesmalays on Jonliary 1.
c) atfentive pasts in a coten \(f\) srec \(N\)

Binomial Mass functions
©

XVI. III.E

Porssen Rencton Vorialt
－fisum a foxed enterval y⿱⿱亠⿻⿰丨丨八弓⿱亠幺十
－Considin e soccific fype ol evont on occuncost in ywe enterivel（rare）．
－Let \(\lambda\) e twe mran number of ercento mat accul in swe entrival
－X＝number of events shot eceu on sne intaval is a Brsson findom Variable

Mass funethon
\[
\operatorname{inctin}_{f(x)}=\lambda^{x} e^{-x} / x!; x=9 ; 2, \ldots
\]

Examples
1）Hying bomi hits on London in wwI
a）fiuplan asuivals
8）Pussian toot soldias（classic）
4）Physician officés ．．
s．）Discrueries．

RPM

Poisson moss functions



5-2
\[
85 \%
\]
XVI.

Unifown Rersten Varielt
- Exponinant wish a sonpt saact.

- Eack \(x_{i}\) is quenlly axcly to acean
- X a a Ruyear condom vainatc

Hess function \(f(x)=\frac{1}{n} ; x=x_{1}, x_{2}, \ldots ; x_{n}\).


Namptes
1) Bell of a sinst dis
2) Birestatay of in indivicual
3) Pandan numbers

\section*{Randön Numbers}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 17\％\({ }^{1}\) & 47411 & \(27 \times 21\) & \(01 \times 4 \%\) & 016.7 & 30375 & 23811 & 4484K \\
\hline 7．N1．i4 & 54811） & 2）30女1 & 9269 & 2：12：3） & 6xisis & 415.27 & ¢120］ \\
\hline 737 & ¢xisi & mill & 6H455 & 61163 & 22132 & 2－2以碞 & 14：41； \\
\hline －6ilit & 0：54\％ 5 & TMindi & ！1．4\％！ & M－4tit & xisisil & － 3 \％\({ }^{1}\) & \％1176 \\
\hline U1！x！ & 17．23i & 47382 & 3！linis & 9＋1\％） & 71110 & 1リ121 & 11！3is \\
\hline 4.0038 & mis． & 4：300： & 01.5 & 11438 & 12090 & ：16719 & 8．7．3． \\
\hline 965cs： & Ivisy & ：1110｜ & 24.114 & \(61 \times 3\) & （i）w \({ }^{\text {a }}\) & ＋98．06 & 217010 \\
\hline 680.35 & （1）1619 & IMRMS & 20T0） & EfPMS & Gin 110 8 & Sicu．i． & 11127 \\
\hline 75．151 & H7772 & Mivial & situi & 41118 & Glinini & （6G4112 & 1：14：36 \\
\hline 3712．i & 9m175 & tMrbl2． & 11245 & Mars： & （11．is） & 92： 2 ！ 01 & （Kilid \\
\hline Kisna &  & 7149 & M50 & \(59715:\) & ！xins & citio & 41543 \\
\hline ioteis & OWICO & giary & Nation & 7：0M4 & \％．ind & －itmis & 21anis \\
\hline \(5 \geq 728\) & 1：1111 & －－ & irixi & 751：\％ & dinins & 80185 & 51.631 \\
\hline ＋ 4 ¢i \(i 1\) & Sixat & & ，50： & 290］ 0 & Njoild & 21157 & 6，init \\
\hline 6763 & 41.98 & & 9：40 & S3in & 9．ing 9 & 3！03ct & Heal3 \\
\hline 13770 & 14917 & 165\％9 & 51945 & 6.356 & 00342 & 01047 &  \\
\hline Minki & 749．7 & maind & 6xs 1！ & 96－5 & 3 STO & whios & aticiz \\
\hline  & 59397 & 43.119 & \(62+16\) & ［unis & 473：\％ & \(414: 118\) & \(42 \times 174\) \\
\hline 21211 & 77.295 & －4！ 56 & GxMIJ \({ }^{\text {d }}\) & 57！ 11 & 0616：3 & 9 & 50.25 \\
\hline Yevuch & －422． & 3 EF 36 & 15079 & 8 HH 94 & M10：33 & 47745 & ＋5M0 \\
\hline 81496 & 23906 & TMXTE & 71401 & \(349 \times 3\) & MMIE： & cimict & N0064 \\
\hline 71361 & 41！39： & ！！！m！ & \(6417 \times 8\) & 21873 & 4 tifio & －naiis & Cismid \\
\hline 36：3＋1 & －113：36 & 3746！ & 3 HCi 6 & 164.9 & 7106 & \％Mios & cinim \\
\hline \(341 \leq 3\) & \(22 \times 66\) & 1x7et & tild & 13： 2 & Pinili & 90． 3.5 & 900 \\
\hline  & 1396゙！ & 124：3 & （1：4n＋3 & 0184 & Oixubu & \(7.50: 1\) & 97ins \\
\hline 7.689 & 7（17：2） & Ucis．in & cism & M1IM1 & 12747 & 7410］ & 0．i．j36 \\
\hline 64204 & 402 & 31.5005 & Disix． & W：CIF & asis！ & 19130］ & 21646 \\
\hline 16.74 & fekio & ： 6 （10） & W7？：27 & 25136 & 17\％10 & 2209 & 724n5 \\
\hline abion & T436i4 & MMi．il & 41：678 & 1）2：9 & 21874： & ．3．35 314 & \(887 \times 4\) \\
\hline 4ngut & －2x40 & 64697 & 62065 & ：017． & N2．ili & 2：3：38 & 42：07 \\
\hline 42：163 & Mcint & 2125 & －10：496 & N15？ & 280 & 066．0 & （177\％9 \\
\hline ¢1才4 & 1.512 .5 & Avri\％ & （1Azio & － \(\mathrm{max}_{51}\) & gimmi & \(4 \times 16\) & \(7 \mathrm{tri21}\) \\
\hline 31413 & 2：5 & H2－15 & Sllif & 36734 & 9 m 144 & （18）： 8 & ？ 6 Vid \\
\hline 78011 & 15175 & 671．i & （xiv） & 4815： & 2403 & \(4!9607\) & 3 j 103 \\
\hline 40903 & 7 W 616 & 4.210 & 7：3186 & 4＊16：3 & 1315s & 03177 & 51696 \\
\hline 9ranj & 6 3 348 & 40745 & 7914 & 4．Mind & 1：Nrys & crios & 18730 \\
\hline eisill & 03346 & Aiti？ & 29 9115 & 71108 & 1．7．27 & Sindic & 1476. \\
\hline 11．0n & mixis & 1074\％ & 61899 & ［！M吅 & \(4 \mathrm{~T} \times 95\) & 4！564 & 93！ 16.5 \\
\hline S340： & 3 p 3 P & 710\％ & 9n071 & H6\％ & 67：N4 & （0．201） & 919.527 \\
\hline 73641 & 26740 & 4042 & \(64 \times \mathrm{J}\) & 1.08 & ¢Eらす！ & （43til & 12．ind \\
\hline 49004 & 14309 & 12817 & 7 NTO 2 & 82510 & 18991 & 6.391 & \(3184{ }^{3}\) \\
\hline W15：5 & \(76 \times 22\) & 187170 & 772：3 & 74772 & masin & Ui3x14 & 2urys \\
\hline 60.37 & 47842 & 1693，\({ }^{\text {a }}\) & 24.46 & E2MS1 & 38190 & Rid3） & 2：1761 \\
\hline 41788 & 74409 & \(7617 \%\) & 5 sil 18 & Qinas & 67644 & C17：2 & 20．3i \\
\hline 73818 & 74434 & 02371 & \(0 \times 53\) & 7 cens & 534．il & \(5 \overline{1} 139\) & 90612 \\
\hline 81383 & 35489 & 09095 &  &  & & \(\because 310\) & 57272 \\
\hline 214．88 & 39449 & 302.11 & 741：0 & 2 coui & & －5\％ & 25807 \\
\hline 90：3\％ & 03185 & \(6!118\) & 20rsma & 646nt & & 350 & 68908 \\
\hline \(0 \mathbf{0} 249\) & 78133 & 4：303 & 61172 & 21125 & &  & 5.5487 \\
\hline 60335 & 31226 & 89400 & \(4 \mathrm{Si81}\) & 24026 & \(\because \because\) & ． 5 & 11244 \\
\hline
\end{tabular}
\[
5-2
\]

559
XVI．III． 60

Gaussion Rondon Varialls
- On "wall-beharad" doskbutton
- Symostic, - 0 <yec.
- Not Whe tacits matit ssuc what they
- Thene one mang destebustows for "bell-shaper" "auves
Densety function
\[
\begin{aligned}
& f(y)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^{2}} ;-\infty<y<\infty \\
& \begin{array}{ll}
i f(y) \quad-\infty \in \mu<\infty \quad \text { (sNeons.) }
\end{array}
\end{aligned}
\]

XVI.III. 61

ERIC

QMPM
2031

Rectaneular Rondom Vasiabts


Expantitial Rendan Vaucole

\(5-2\)

Expectahons
\[
\begin{array}{ll}
\mu=E(x) & \sigma^{2}=E\left((x-\mu)^{2}\right) \\
\mu=\sum_{\langle=1}^{n} f\left(x_{i}\right) x_{i} & \sigma^{2}=\sum_{i=1}^{n} f\left(x_{i}\right)\left(x_{i}-\mu\right)^{2} \\
\mu=\int y f(y) d y & \sigma^{2}=\int(y-\mu)^{2} f(y) d y
\end{array}
\]

Bromiá
Porssen
Thifin
Gensmen
Rectansalen
exponsital
\begin{tabular}{|cc}
\hline\(\frac{A}{N p}\) & \(\sigma^{2}\) \\
\(\lambda\) & \(N_{p}(1-p)\) \\
\(\frac{1}{n} \sum x_{i}\) & \(\lambda\) \\
\(\mu\) & \(\frac{1}{\sigma} \sum\left(x_{i}-\mu\right)^{2}\) \\
\(\frac{1}{2}(8-a)\) & \(\sigma^{2}\) \\
\(\theta-1\) & \(\frac{1}{r 2}(\delta-a)^{2}\) \\
& \(\theta-2\)
\end{tabular}

Lecture 5-3. Probability and the Linear Model

Probability and the Linear Model: Probabilistic Assumptions Regarding the Errors of the Linear Model
(1)

\section*{Lecture Content:}
1. Discuss probability distribution of the error terms in à inear model
2. Introduce several continuous probability distributions important to the analysis of a linear model

\section*{Main Topics:}
1. The Mathematical Form of the Linear Model
2. Some Adáfíqonal Distribution Theory

Topic 1. Māthemātical Form of the Linear Model
I. Basic Isssue: Review our notions of regression and introduce probability into our analysis
1. Unit 4 presented multiple regression as model fitting
2. No formalized goodness-of-fit measures were discussed, since such analyses depend on probability theory; that at the time, we hăd not discussed
3. In this lecture, and in Unit 6 , we reintroduce the linear model, presenting the relevant probabilistic assumptions, and discuss how to evaluate a fitted model with probabilistic assessments

İI. Problem: What do we assume about the random variation of the various components in the model
1. We have a vector of responses \(\bar{y}\), a matrix of vectors of carriers \(X\), a vector of regression coeffictents \(\underset{\sim}{B}\); and of course, residuale.
2. One approach is to assume that \(\bar{y}\) is muitivariate Gaussian distributed, with mean \(\bar{X} B\); we essentialiy work with the conditional distribution of \(\overline{\mathbf{y}}\) given \(\overline{\mathrm{S}}\).
a. Regression may be approached strictiy via conditional expectations
\(\overline{\mathrm{b}}\). We always assume that the rows of \(\underset{\sim}{\mathrm{X}}\) are known, fixed constants
c. Hence it seems logicā to say that given \(\underset{\sim}{\mathrm{X}}\), \(\underset{\sim}{\mathrm{y}}\) is a random variable
3. \(\bar{A}\) simpler method of introducing probability focuses on the residuals of the model
a. This approach exclusively wili be utilized by us
\(\bar{b}\). We assume that each residual \(\dot{y}_{i}-\bar{y}_{i} \overline{\text { is }} \bar{a}\) univariate Gaussian random variable
III. Solution: The linear model with Gaussian errors
1. First we rēviēw the linear model
a. Assume \(y_{2}\) is a linear function of \(x_{11}, x_{12}, \ldots, x_{1 p}\),
\(i=1,2, \ldots, N\)
b. We write
\[
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{p} x_{i p}+e_{i}
\]
\(B_{0}^{-}\)is a constant term in the model; \(e_{i}\) is the fth residual.
c. In matrix form
\[
\begin{aligned}
& \bar{y}=\underset{\sim}{x} \underset{\sim}{B}+\underset{\sim}{e} \text { (add a column of i's to } \underset{\sim}{x} \text { ) } \\
& y \text { (HxI) } \quad \underset{i}{(N X}(\mathrm{p}+1) \\
& \text { B (pxi)xi) e (NXI) }
\end{aligned}
\]
d. Assumptions on e
i. \(E(e)=0 \quad\) each residual has mean (expected value) \(=0\)

1i. Kesiduals are independent, with constant variance \(\sigma^{2}\)
ij.1. Hence \(\operatorname{Cov}(e)=\sigma^{2} I\) NxN) matrix
iv. Since \(\underset{\sim}{y}=\underset{\sim}{X} \boldsymbol{X}\); i.e. \(\mathcal{Y}\) is the sum of \(\underset{\sim}{e}\) and X \(\beta\), Y has the following moments:
A. \(\underset{\sim}{\boldsymbol{y}}=\underset{\sim}{X} \underset{\sim}{B} \quad \mp \underset{\sim}{e}\)
B. \(\quad \bar{E}(\underset{\sim}{y})=\bar{E}(\underset{\sim}{X} \underset{\sim}{\beta}+\underset{\sim}{\mathbf{e}})\)
\[
=\underset{\sim}{X} \underset{\sim}{\beta}+E(\underset{\sim}{e})=\underset{\sim}{X} \underset{\sim}{B}
\]
C. \(\operatorname{Cov}(\underset{\sim}{\square})=\overline{\operatorname{Cov}}(X \underset{\sim}{\boldsymbol{\beta}}+\underset{\underline{e}}{ })\)
\(=\overline{\operatorname{Cov}}(\underline{e})=\sigma^{\overline{2}} \bar{I}\)
v. The new assumption is \(e_{i} \sim \operatorname{Gaussian}\left(0 ; \sigma^{2}\right)\) Gaussian reśiduals

2．This new probabilistic assumption also affects the dis－ tribution of \(\bar{\sim}\) ，the Least Squares Regression Coefficients
i．Remembē
\[
\begin{aligned}
& \text { minifinze sum of squares of residuals }
\end{aligned}
\]
í⿱一土儿，By differentiating，we ss．d，
\[
\begin{aligned}
& \underline{b}=\left(x^{\prime} \underset{x}{x}\right)^{-1} \underset{\sim}{x} \underset{\sim}{y}
\end{aligned}
\]
\[
\begin{aligned}
& \text { of } \underset{\sim}{y}
\end{aligned}
\]
iii．Hence，since a linear combinātion of Gaussian random variables is also Gaussian，b is Gāus̄̄iān；with

B．\(\quad \operatorname{Cov}(\underset{\sim}{b})=M \operatorname{Cov}(\underset{\sim}{\operatorname{O}}) \mathrm{M}\)
\(=M \sigma^{2}{ }_{\sim}^{I M}{ }^{3}\)
\(=\sigma^{2}\left(\underset{\sim}{x}{ }^{\prime}{\underset{\sim}{x}}^{-1} \underset{\sim}{x}{ }^{x} \underset{\sim}{x}\left(\underset{\sim}{x}{ }^{\prime}\right)^{-1}\right.\)
\(=\sigma^{2}\left(\underline{x}{ }^{\prime} \underline{x}\right)^{-1}\)

\section*{Topic 2. Some Adātionāl Distribution Theory}
I. Basic \(\overline{\text { Is}} \bar{s} u \bar{e}:\) Introduce other probability functions important in regression ant lysis
1. When fitting a model, we examined \(t\)-statistics, \(R^{2}\), and pairwise correlation coefficients
2. Each of these quantities is a random variable with a specific distribution function
II. Distributions
1. \(t=\frac{b_{\bar{i}}}{\operatorname{S.E} \cdot\left(\bar{b}_{i}\right)}\) follows a \(t\) distribution on \(\overline{\mathrm{V}}-\overline{\mathrm{p}}\) degrees of (5) freedom, if \(\bar{B}_{i}=0\)
a. \(\bar{f}(t)=\frac{\frac{N-p-1}{2}!}{\sqrt{\pi(N-p)}\left(\frac{N-p-2}{2}\right)!} \cdot \frac{1}{\left(1+\frac{\bar{t}^{2}}{N-p}\right) \frac{(N-p+1)}{2}}\)
\[
\begin{equation*}
-\infty<\bar{t}<\infty \tag{Ga}
\end{equation*}
\]
b. As \(\overline{\mathrm{N}} \rightarrow \infty, \mathrm{f}(\mathrm{t}) \rightarrow\) Gaussian \((0,1)\)
2. \(r_{i j}=\frac{\sum_{k}\left(\bar{x}_{i k}-\overline{\bar{x}}_{i}\right)\left(\bar{x}_{j k}-\bar{x}_{j}\right)}{\sqrt{\sum_{k}\left(\bar{x}_{i k}-\bar{x}_{i}\right)^{2} \Sigma\left(\bar{x}_{j k}-\bar{x}_{j}\right)^{2}}}\)

Sample Correlation Coefficient of \(\bar{x}_{i}\) and \(X_{j}\)
a. If \(\rho_{i j}=0\) (population value is zero)
\(r_{i j} \sim \operatorname{Gaussian}\left(0, \frac{1}{N-3}\right.\) ) approximately
b. This approximation only holds for large \(N\).
3. \(\frac{1}{\mathbb{N}-\bar{p}} \bar{\Sigma}\left(\bar{x}_{i}-\hat{\bar{y}}_{i}\right)^{2} / \bar{\sigma}^{2}\) follows a \(\bar{x}^{2}\) distribution on ( \(N-p\) )
degrees of freedom. Sum of squares of Gaussian random variables are - Chi-square.
\[
867
\]
 then \(\frac{S S_{k} / k}{S S_{\ell} \|^{l}}=\dot{F}_{\bar{k}, \bar{\ell}} \quad \mathrm{~F}\) distribution; ratios of variances.
5. Since \(R^{2}\) is a ratio of sums of squarēs,
\[
\frac{R^{2} /(p-1)}{\left(1-R^{2}\right) /(N-p)}=F_{p-1 ; N-p}
\]
if no inear relationship exists between \(\underset{\sim}{X}\) and \(\underset{\sim}{x}\).

Lecture 5-3
Transparency Presentation Guide
\begin{tabular}{|c|c|c|}
\hline Lecture Outline Location & Transparency
\(\qquad\) & Transparency Description \\
\hline Beginning & 1 & Lecture 5-3 Outline \\
\hline \multicolumn{3}{|l|}{Topic 1} \\
\hline \[
\begin{aligned}
& \text { Section 琣 } \\
& \text { 1: }
\end{aligned}
\] & 2 & Review of the Linear Model \\
\hline  & 3 & New assumption \\
\hline 2. & 4 & Distribution of \({ }_{\text {L }} \mathrm{LS}\) \\
\hline \multicolumn{3}{|l|}{Topic 2} \\
\hline \[
\begin{aligned}
& \text { Section II. } \\
& \text { 1. }
\end{aligned}
\] & 5 & Student's t distribution \\
\hline 1.b & \[
\begin{aligned}
& 6 a \\
& 6 \mathrm{~b}
\end{aligned}
\] & t versus Gaussian; for
\[
\mathrm{df}=1,5,10,30
\] \\
\hline 2. & 7 & Sample Correlation Coēficient \\
\hline 3. & 8 & \(\chi^{2}\) and F distributions \\
\hline 5. & 9 & Some characteristics of Important Distributions \\
\hline
\end{tabular}

Lectuse 5.3
Peobabilet and the Lineare Modil:
polabclustic fosumptions Regasding the exsens of the lincar Molid

Lectunc Content:
1. Drscuss tive peobobikty dustrubathen of She evsar tesms
2. Inthodure Eercial inportant probabiluy divtiluetians

Main Tapics:
1. Nathematheal form of ime Lncier Nood
a. Some pdetitional Istribution yiveny
xvi.III. 71

Review of the Linear Model
a. \(Y_{i}\) is a linear function of \(X_{i 1}, X_{i 2}, \ldots . X_{i p}\)
\[
i=1,2, \ldots, N
\]
b. \(Y_{i}-b_{0}+b_{1} x_{i 1}+b_{2} x_{i a} \ldots+\ldots+b_{p} x_{i p}+\varepsilon i\) \(e_{i}\) : th residual or error
c. In matrix form \(y=x \beta+E\)
d. Assumptions on E \({ }_{i}\) Each \(e_{i}\) has ado expectation. \(E\left(C_{i}\right)=0\)
is Residuals are independent
\[
\operatorname{Cov}_{\mathrm{v}}\left(e_{i}, e_{j}\right) \cdot 0 \text {, all } 亠 巾 j
\]
iii Residuals the carstint
\(V_{0}\left(\varepsilon_{i}\right)=\sigma^{2}\)

Hence, \(\operatorname{Gor}(\varepsilon)=E\left(\varepsilon \varepsilon_{x}^{\top}\right)=\)
\[
\left(\begin{array}{cccc}
\operatorname{Var}\left(e_{1}\right) & \operatorname{Cov}\left(e_{1} e_{2}\right) & \cdots & \overline{C o v}_{\text {or }}\left(e_{1} e_{N}\right) \\
\operatorname{Cov}\left(e_{1} e_{2}\right) & \operatorname{Var}\left(e_{2}\right) & & \operatorname{Cov}\left(\bar{e}_{2} e_{N}\right) \\
\vdots & & \ddots . & \operatorname{Vor}\left(e_{N}\right)
\end{array}\right)=\sigma^{2} I
\]

Regression Assumptions

Since \(\underset{\sim}{y}=\underset{\sim}{x}+\underset{\sim}{E}\), ie. \(y\) is sum of the constant \(X_{\beta}\) and condor vasuebic \(E\), we hire
\[
\begin{aligned}
& \text { 1. } E(y)=E(\underset{\sim}{x}+\underset{\sim}{e})=\underset{\sim}{x}+E(\underset{\sim}{e})=X \underset{\sim}{\beta} \\
& \text { 2. } \operatorname{Cov}(y)=\operatorname{Cov}(x \beta+\underset{\sim}{x})=\operatorname{Cov}(\underline{e})=\sigma^{2} \underset{\sim}{z}
\end{aligned}
\]

New assumption:
\(e_{i} \sim\) Gaussian, mon 0, vesionce \(\sigma^{2}\) wiation \(\quad e_{i} \sim \operatorname{Can}\left(0, \sigma^{2}\right)\)

More orff,
\[
\begin{gathered}
e \approx G_{i} u_{n}\left(0, \sigma^{2} I\right) \\
n \text { dimensions }
\end{gathered}
\]
oud
\[
\begin{array}{r}
y=\operatorname{Gau}_{\boldsymbol{N}}\left(\underset{\sim}{X \beta}, \sigma^{\mathbf{2}} \overline{\boldsymbol{I}}\right) \\
872 \\
\text { xvi.ini. } 73
\end{array}
\]

ERIC

Distribution of b, Leost spuar is aggreseon loof.
Amentor \(\underline{b}=\min _{\underset{\sim}{*}}\left(\underline{y}-\underset{-}{x} b^{v}\right)^{\prime}\left(y-x \underset{\sim}{x} b^{+}\right)\)
\[
\underline{b}=\left(\underline{x}^{\prime} \underline{x}\right)^{-1} \underline{x}^{\prime} \underline{y}=\underline{M} \underline{y} \text {, uncar combination }
\]

Henic bis Gaussion since a linear combinaton of Gaussion nondem vave vers (y)
is also Gauswn.
\[
\begin{aligned}
E(b)=E(\underline{M} y) & =\underline{N} E(y)=\underline{M} \underline{\beta} \\
& =\left(x^{\prime} \underline{x}\right)^{-1} \underline{x} \underline{x} \beta=\beta \quad \text { (untiaxd) }
\end{aligned}
\]
\[
\begin{aligned}
\operatorname{Cov}(\underline{\underline{b}}) & =\underline{M} \operatorname{Cov}(\underline{y}) M^{\prime} \\
& =\underline{M} \sigma^{2} \bar{I} \underline{y}^{\prime} \\
& =\sigma^{2}\left(x^{\prime} \underline{x}\right)^{-1} x^{\prime} x\left(x^{\prime} \underline{x}\right)^{-1} \\
& =\sigma^{2}\left(x^{\prime} \underline{x}\right)^{-1}
\end{aligned}
\]
\(T\) destebution Studente \(\mathcal{F}\)
\[
\begin{aligned}
& t=\frac{b_{i}}{S . E \cdot\left(b_{i}\right)} \\
& \text { S.E. }\left(b_{i}\right)=\left(i_{i} i\right) \text { th etement of } S_{y . x}^{2}\left(x^{\prime} \underline{X}\right)^{-1}
\end{aligned}
\]
\(t\) follows a \(\mathcal{t}\) asfrepurton on ( \(N-p\) )
\[
\begin{gathered}
\text { degnees grecdom } \\
\text { when } B=0
\end{gathered}
\]
\[
\text { when } \beta_{i}=0
\]
\[
f(t)=\frac{\left(\frac{N-n-1}{2}\right)!}{\sqrt{\pi(N-p)\left(\frac{N-N-2}{2}\right)!}} \frac{1}{\left(1+\frac{t^{2}}{N_{-p}}\right)\left(\frac{N-p+1}{2}\right)}
\]

Is \(N \rightarrow \infty ; f(t) \rightarrow\) Gaussion \((0,1)\)

RNPM


Comparizon of Gaussian
with \(t, 5\) degrees of freedom

XVI.III. 76


Comparison of Gaussian
with \(t_{j} 30\) degrees of freedom


Sample Covielation Cofficiunt
\[
n_{i j}=\frac{\sum_{k}\left(x_{i k}-\bar{X}_{i}\right)\left(x_{j k}-\bar{X}_{i}^{j}\right)}{\left(\sum_{k}\left(\bar{x}_{i k}-\bar{X}_{i}\right)^{2} \sum_{k}\left(\bar{x}_{j a}-\bar{x}_{j}\right)^{2}\right)^{/ 2}}
\]

If \(\rho_{i j}=0\) (population value is vicio) Ihen \(R_{i j} \sim G_{a u}\left(0, \frac{1}{N-3}\right)\)

This appeaxumation holds only for tange \(N\).
\[
8.7
\]
\(5 \cdot 3\)
XVI. III. 78

ERİC
\(x^{2}\) and 7 thostributons
\[
\begin{aligned}
& \frac{1}{N-p} \sum_{\text {disthbution }}\left(y_{i}-\hat{y}_{i}\right)^{2} / \sigma^{2} \text { follows an }(N-p) \text { af. } x^{2}\left(x_{\mu, p}^{2}\right)
\end{aligned}
\]
 OL (2austion nono. vass) follow \(x^{2}\) dustioution

If \(s s_{A} \sim \sigma^{2} x_{k}^{2}\) and \(s s_{l} \sim \sigma^{2} x_{l}^{2}\),
than \(\frac{S S_{a} / \mathrm{k}}{5 S_{k} / \mathrm{l}}\)
follows an \(\triangle\) duatic.
with \(0, \Omega\) d.f.
7 dustibutons ase oftainco fran satios of
Since \(R^{2}\) is a soto of sums of spuencs, Hx yhese is mo untan nelatonstup betwen \(\frac{R^{2} /(p-1)^{2}}{\left(1-R^{2}\right) /(N-p)}\)

5-3
XVI.III. 79

Summary Characteristics of Important Distributions
\(X_{a}^{a}=\) sum of \(n\) squared standard Gausaians
(Chi glare with \(x^{a} \rightarrow\) degrees \(f\) freed om) as \(n \rightarrow \infty, x^{\mathrm{a}} \rightarrow\) Gamesiak
\[
E\left(x^{2} n\right)=n \quad . V\left(x^{2} n\right)=\overline{2}_{n}
\]
\[
\begin{aligned}
& \text { [ } f \equiv \text { degrees of freedom }]
\end{aligned}
\]
\(F_{\text {mon }}=\) ratio of two \(x^{2}\) divided by their degrees
\[
\begin{aligned}
& \text { of freedom }=\frac{x^{2} / m}{x^{2} / n} \\
& \text { = } \\
& \text { as } n \rightarrow \infty, F \rightarrow x^{2} / m \\
& \text { as } m, n \rightarrow \infty, F \rightarrow 1
\end{aligned}
\]

\section*{Howework Problems \\ Unit 5}
1. Let \(N\) represent a non-résponse to a mailed questionnaíre and \(R\) reprēent a response: We mail questions to four people on a specifié đāy.
 in the number of responses to the questionnaire mailed on the given day? Ifst then: Are these outcomes equaliy iikeiy?
b) How many elenents are in the sample space if we are interested in the response to each questionnaire mailed on the given day? (Each questionaire is distinctly identified by a code number.) List them. Depict the set of outcomes representing responses to three out of the four questionnaires. Depict the set of outcomes représenting at most one response.
c) What is the probability that the non-responses represent questionnaires lost in the mail?
2. An econometric model predicts whether the GNP will increase (i), decrease (d); or remain the same (s) in the following year. The GNP will then be observed to increase (I), decrease (D), or remain the same( S ).
a) List ali the elements of the sampie space.
b) Depict the events thāt the modei predicts correctly.
c) Depict the events that the model predicts correctly using a Venn Diagram (Hint: first consider the possible outcomes (part a) as a matrix.)
3. According to accident reports; 25\% of all accidents which occurred while equipment was being used were caused by faulty equipment and \(75 \%\)-by improper use of the equipment. The probability that on a given day an accident will occur while equipment is being used is 05: Use set notation to define the following events as unions, intersections complements; etc. Then calculate the probability that each event will occur on a given day.
a) An accident occurs caused by faulty equipment.
b) Ān accíqeñ occurs caused by improper use of equipment.
c) No accident occurs.
d) An accident wās cāused by faulty equipment, given that an accident has occurred.
e) An accident occurs caused by either faulty equipment or improper use.
f) An accident occurs; but the equipment was found not to be faulty.
4. A jail has 490 inmates. it is known from the records that

300 comitted armed robbery
200 comittee larceny
50 comitted homicide
20 comitted armed robbery and homicide
30 comitted larceny and homicide
20 comitted larceny and armed robbery
10 comontted all three crimes
a) Draw the Vem Diagram illustrating this problem.

If we draw an inmate's file at random, what is the probability that the inmate committed:
a) Two; but oniy two; of the three types of crimes.
b) At least one of the three types of crimes.
c) Homicide; given the inmate comatted armed robbery.
d) Homicide; given the inmate did not conmit armed robbēry
e) Armed robbery or larceny
f) Only one of the three types of crimes
g) Arbon
\[
8 \$ 1
\]
5.

Age it Mirriage, Husband and Wife, New Haven, Conn.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Age of Husbend} & \multicolumn{8}{|c|}{- . . Age of Wife -} & \multirow[b]{2}{*}{Total} \\
\hline & 15-19 & 20-24 & 25-29 & 30-34 & 35-39 & 40-44 & 45-49 & \(50+\) & \\
\hline 15-19 & 42 & 10 & 3 & & & & & & 55 \\
\hline 20-24 & 153 & 504 & 51 & 10 & 1 & & & & 719 \\
\hline 25-29 & 52 & 271 & 184 & 22 & 7 & 2 & & & 538 \\
\hline 30-34 & 5 & 52 & 87 & 69 & 13 & 5 & & & 231 \\
\hline 35-39 & 1 & 12 & 27 & 29 & 21 & 2 & 3 & & 95 \\
\hline 40-44 & & 1 & 9 & 18 & 17 & 8 & 2 & 1 & 56 \\
\hline 45-49 & 1 & & 3 & 6 & 16 & 16 & 7 & 1 & 50 \\
\hline 50 and & & & 1 & 4 & 11 & 15 & 21 & 43 & 95 \\
\hline Total & 254 & 850 & 365 & 158 & \(8 \overline{6}\) & 48 & 33 & 45 & 1,839 \\
\hline
\end{tabular}

Source: A. B. Hollingshead, "Cultural Factors in the Selection of Marriage Mates," American Sociological Revieß 15, 1950, p. 622.
a) Are the ages of husband and wife independent? What striking fact about these data imediately answers this question?
b) What is the probability that one partner was between the ages 30-34?
c) What is the probability that one partner was between the ages of 30-34 and the other was between the ages of 20-24?
d) What is the probability that the husband was between the ages of \(30-34\) and the wife was between the ages of \(20-24\) ?
e) What is the probability that the wife was between the ages of 20-24 given that the nusband was between the ages of \(30-34\) ?
f) What is the probability that both partners were at least 45 yeari old?
g) What is the probability that at least one partner was at least 45 years old?
h) What is the probability that neither partner was at least 45 years old?
6. You are working on your annual report for the mayor. of a smail city. The fire department reports that last year they responded to the following number of false alarms per week:
\begin{tabular}{|c|c|}
\hline \# weeks & \# false alarms per week \\
\hline 1 & 0 \\
\hline 4 & 1 \\
\hline 7 & 2 \\
\hline 10 & 3 \\
\hline 10 & 4 \\
\hline 8 & 5 \\
\hline 7 & 6 \\
\hline 3 & 7 \\
\hline 1 & 8 \\
\hline \(\frac{1}{52}\) & 9 \\
\hline 52 & \\
\hline
\end{tabular}
a) Use a stem and leaf display to identify the distribution which the data follow.
b) What is the average number of false alarms per week?
c) What is the standard deviation of the number of false alarms per week?
d) Use the answers to (b) and (c) In the probability function you specified in (a) to verify your choice of distribution (just calculate two of the theoretical number of occurrences, \(1 . e\). \(P\{X=0\}, P\{X=1\}\) ).
e) if each false alarm costs the city \(\$ 1600\), what should you bud\(\bar{g} \bar{t}\) for false alarms for the first three months for next year?
7. As chairperson of public service organization's trust fund you are considering buying one of two stocks, both currently priced at \(\$ 46\) per share, for a one month trading venture. You have estimated the probability distribition for the closing prices of the two stocks (rounded to the nearest dollars) one month hence as follows:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Stock A} & \multicolumn{2}{|l|}{Stock B} \\
\hline closing price & f(bilce) & closing price & f(price) \\
\hline 44 & . 1 & 44 & . 005 \\
\hline 45 & . 1 & 45 & . 015 \\
\hline 46 & . 1 & 46 & -030 \\
\hline 47 & . 1 & 47 & -100 \\
\hline 48 & . 1 & 48 & . 350 \\
\hline 49 & . 1 & 49 & . 350 \\
\hline 50 & . 1 & 50 & - 100 \\
\hline 51 & . 1 & 51 & -030 \\
\hline 52 & . 1 & 52 & -015 \\
\hline 53 & . 1 & 53 & . 005 \\
\hline
\end{tabular}
a) Find the expected value of one share of each stock.
b) Find the variance of the price of one share of each stock (Financial analysts often refer to variance as "risk").
c) Which stock would you purchase and why?
8. a) 太太s city manager, you extop off to visit the 7th Precinct Police station to look àt the crime statistice (crimē per day) of the past 3 monthe. Assuming a "typlcal" peitiod (not a crime wave), and discounting the "full moon" theory, to what distribution to you expect the data to conform?
b) Later you enter the comptroller's office to pick up some financial data. After fitting a regression to this data, You plot the residuals and determine that the regression fits remarkably weil. To what distribution do the residuals conform?
c) Stopping for lunch at inamburger joint (since city managers can't wfford real food) you pass the time wating in line by noting how long each customer takes to be berved. The tatistician in you immediately recognizes that these data fit a distribution, which you rush off to plot. What distribution caused yous to mise lunch?
9. a) When you return to your office you resume work on the ficancial data. Looking at the daily expense account sheets for the past year, you can't help wondering about the distribution of the last dizit (the "unft" digit denoting single dollàis), so you make a plot. What distribution do you expect thise data to follow?
b) Finaily getting to work, you correct the errors in the financial reports. What distribution do you expect the number of errors per report to follow?
 construction supervisor tells you that he has found 9 faulty valvés in the lot of 96 required for the site. Since you expect to need another 200 lots ( \(0 \bar{f} 96\) each) over the next 6 months, you need a rough estimate of how many additional valves to order to replace the faulty ones. What distribution do you expect the number of faulty valves to follow?
d) Finally; after a hard day ruming around and using your profound quantitative skilis, you retire to your favorite nightspot. However; your acute mind does not faii to notice the number of mugs of draught bear ordered by the customers. You repeat this exerciae every night for a month; except for Sundays, when you Btay hone to view "Mastérpiece Theater" and "Evening at Symphony" with the BSO , to catch up on your cultural events. What distribution do you expect the beer consumption data to follow?
\[
855
\]
10. The following are the earnings for the city hall staff for the week of February 4; 1977:

187.50 t'o \(194.99 \quad 2\)
195.00 to \(202.49 \quad 7\)
202.50 to 209.99 O
210.00 to 217.4914
217.50 to 224.9910
225.00 to \(232.49 \quad 6\)
232.50 to 240.002
a) Is the underiying distribution (of weekiy earnings) discrete or continuous? Why?
b) Compute the mean of the above distribution.
c) Is the answer in (a) the same as you would have obtained had you calculated the ratio:
total earnings for all city hall staff during the week ended 4 Feb. 77 total 非 city hall staff during the week ended 4 Feb .77

Why or why not?
d) Compute the median of the above distribution.
e) In which direction is the data skewed?
f) The city comptroiler stated that the total payroll for the week ended 4 Feb. 77 was \(\$ 10675.18\). Do you have any reāon to doubt this statement? Support your position very briefly.
8) Is the mean computed in (a) a satisfactory description of the "average" or typical earnings of these 50 employees in the week of 4 Feb : 77? Why or why not?

\section*{Homework Unit 5 Solutions}

1(s) Theré are 5 posisible outcomes \(\{0,1,2,3,4\}\). They are (probably) not equally likely, but we do not know for certain.
(b) There are \(\mathbf{2}^{4}=16\) outcomes ( 4 quētionnáres each with 2 possible outcomes; \(\mathbb{N}=\) no response, \(R \equiv\) rēsponsē):
\{MNNN; MNNR, ENNRN, NNRR, NRNN, NRNR, NRRN; NRRR, RNNN,
RNNR, RNRN; RNRR; RRNN; RRNR; RRRN; RRRR\}
\{3 responses out of 4\} = \{RRRN; RRNR; RNRR; NRRR\}
\{at most one response\} = \{NTNN, NNNR, NNRN, NRNN, RNNN\}
(c) Without data fron a carefully planned and correctly implemented experiment, this question cannot be objectively answered. Remeber that there are many reasons for a non-response.
\(2(\bar{a}):\{(\bar{I}, I),(\bar{i}, \bar{S}),(\mathcal{I}, D),(B, I),(\bar{B}, S),(\bar{B}, D),(d, \bar{I}),(d, S),(d, D)\}\)
(b) \(\{\) model predicts accurately \(\}=\{(i, I),(B, S),(d, D)\}\)
(c)

shàded area réprēēnts eveñ fmodel prēé dictē accurately\} Veñ diagram in this instance includes a grid.

3a) (accident caused by faulty equipment)
\(=.25(.05)=.0125\)
b) \(\bar{P}\) (accident caused by improper use)
\(=.75(.05)=.0375\)
c) \(\overline{\mathbf{P}}(\) no accident \()=1-\mathbf{P}(\) acćdèent \()=.95\)
d) \(\overline{\mathbf{P}}\) (fauity equipment/aceident) \(=.25\)
e) \(\bar{P}\) (accident faulty equipment) (accident improper use) = \(P(a c c i d e n t)=.05\)
f) \(P(n o t\) faulty equipment/accident \()=P(\overline{\text { fmproper uséaccident })=.75}\)
4.

\[
\begin{aligned}
\text { where } & \quad \begin{array}{l}
A \\
\\
\\
\\
\\
\\
\\
H
\end{array}=\text { larmed robbeny } \\
& =\text { homicide }
\end{aligned}
\]
a) \(\bar{p}(2\) of the 3\()=p(L \cap A\) or \(L \cap H\) or \(A \cap H)\)
\(=p(L \cap A+p(L \cap H)+p(A \cap H)\), since disjoint.
\(=\frac{10}{490}+\frac{20}{490}+\frac{10}{490}\)
\(=\frac{49}{490}=.08\)
b) \(p\) (at least one of the 3 types) \(=1\), since everyone in the jain comitted at least one of the three crimes.
c) \(p(H \mid A)=\frac{p(H \cap A)}{p(A)}\)
\[
=\frac{10 / 490}{300 / 490}=\frac{10}{300}=.033
\]
d) \(\bar{p}(\bar{H} \mid \bar{A})=\frac{p(B \cap \bar{A})}{\bar{p}(\bar{A})}=\frac{30 / 490}{190 / 490}=\frac{30}{190}=.16\).
e) \(\bar{p}(A \cup \bar{L})=\bar{p}(\bar{A})+\bar{p}(\bar{L})-\bar{p}(\bar{A} \cap \bar{L})=\frac{300+200-20}{490}\)
\[
=\frac{480}{498}=.98
\]
f) \(p\) (only one of the three types \(=p(A\) only \()+p(\mathrm{~L}\) only \()=p(H\) only \()\)
\[
\begin{aligned}
& =\frac{270}{490}+\frac{160}{490}+\frac{10}{490} \\
& =\frac{440}{490}=.90
\end{aligned}
\]
8) \(p(a r s o n)=0\), no individual was assumed to have coumitted arson.
5. a) It is clear that the ages of husband and wife are not independent, since the counte cluster along the diagonal from upper left to lower right, with many empty cells in the other corners.
b) \(\underline{P}\) (one partner between 30-34) \(\quad\) (wife between 30-34) \(\mp\) \(\mathrm{P}(\) huisband between \(30-34)-P(\) both between \(30-34)=\frac{158+231-69}{1839}=\) \(\frac{1839}{: 174}\)
c) Phusband between 30-34
wife between 20-24) + \(P\) (wfe between 30-34 husband between 30-34) = \(\frac{-52}{1839}+\frac{-10}{1839}=\frac{62}{1839} \quad .03\)
d) P(husband between 30-34 wife between 20-24) \(=\frac{52}{1839} \quad .028\)
e) \(P\) (wife between \(20-24 /\) husband between \(30-34)=\frac{52}{231}\) .225
f) \(P\) (husband \(45-49\) : \(50+\) ) (wife \(45-49 \quad 50+\) ) \(=\frac{7+1+21+43}{1839}=\) \(\frac{72}{1839}\)
g) \(P\) (wife \(45-49\) 50+) (husband \(45-49 \quad 50+\) ) \(=P(w f e 45-49)+\) \(P\) (wife 50+) \(+P\) (husbend \(45-49\) ) \(+P\) (husband \(50+\) ) \(P\) (wife \& h \(P\) (wife and husband 45-49) - \(P\) (wife \(45-49\) and husband 50+) P (wife and husband \(50+\) ) \(=\frac{33+45+50+95-7-1-21-43}{\frac{151}{1839} \quad .082}=\)
1839 1839
h) \(P\) (neither partner was 45 or older) \(=1\) - \(P(a t\) least one partner was 45 or older) \(=1-.082=.918\)
6. (a) the data arepoisson, \(\lambda=4\)
(b) 4 false alārms per week (d)
(c) variance of a poisson \(=\lambda\); atandard deviation is therefore \(\sqrt{\lambda}\) or 2
(d) 3 months \(\times 4-1 / 3\) weeks/month \(=13\) weeks \(\times 4\) false alarms/week
- 52 expected false alarms
\(52 \times 1600=\$ 83,200\) is the minimum which should be budgeted. To insure that the department does not run short, more should be budgeted (probably enough for another 2 false alarms (one standard deviation) per week
7. ( A\() \bar{E}(\mathrm{~A})=\overline{\mathrm{E}}(\mathrm{B})=\$ 48.50\)
(b) \(\operatorname{Var}(\mathrm{A})=\mathbf{8} .25\)
\(\operatorname{Var}(B)=1.57\)
(c) Assuming other factors equal, since the "risk" of \(B\) is less than that of \(A\) with the same expected value, \(B\) is preferred.
8. (a) Polesēon (or possibly uniform)
(b) Gaussian
(c) exponential
9. (ā) uniform
(b) pols8on
(c) binomial
(d) Gaussian (or poseibly rectangular, maybe even Poisson)
10. (a) While the underlying distribution is technically discrete (since fractional cents are not permited) the measurement \(\$ .01\) is so small that we usually consider such distributions to be essentially continuous.
\[
890
\]
(b) \(\overline{\bar{x}}=\frac{10.680}{50}=213.60\)
(c) No: The ratio gives the exact mean while part (b) gives only - ciose approximation, since a frequescy table was used.
(d) Midfan cilaes ia 210.00 to 217.49. Median observation is \(\frac{50+1}{2}-25.5\) the observation. Median \(=\$ 210+\frac{25-18}{14} \quad \$ 7.50\) - \(\$ 213.75\) (interpolation)
(e). By comparing the mean and median, we note that the data are Eíghtily akewed to left, but for practical purpose it is Eymetrícaí.
( \(\bar{f}\) ) Nō; Bincee \(50(\bar{X})=\$ 10,680\). This figure is an estimate of the total payrolil which is close to the figure of \(\$ 10\); 475 . 18
( \(\overline{\mathrm{B}}\) ) Yē; the mean here seems typical since there is little skewness to distort it.

Quiz
Unit 5

Name

Point vaiues arégiven in parentheses, preceding every question. You have sixty (60) minutes to complete this quiz.

Plase wrice ail your answers on these pages, in the sace provided. Answers should be brief and succinct: ciearly expressed.

When appropriate, answers may be left in fractiona form, e.g., 693/721.
(20) 1. You have constructed anivariate linear regression model relating the response variable; miles per gallon for 1977 Volkswagon Rabbits; and the carriér variable; tire pressure per square inch: You have oniy 15 paired observations to estimate the parameters a and \(b\) in the following model:
\[
y_{i}=\bar{a}+\bar{b} \bar{x}_{i} ; \quad 1=1 ; 2 ; \ldots 15
\]

Thé least squares estimaté \(\overline{\mathrm{o}} \overline{\mathrm{f}} \overline{\mathrm{b}} \mathrm{f} \overline{\mathbf{s}} \mathbf{- 0} \mathbf{0} .16\), very nearly zero.
a) What distribution does the quantity
\[
\frac{-0.16}{8\left(\sqrt{\Sigma\left(\bar{x}_{1}-\bar{x}\right)^{2}}\right)^{-1}}
\]
follow, where \(s^{2}=1 / 13 \Sigma\left(y_{i}-\hat{y}_{i}\right)^{2}\) ? Sketch the shape of its probability function:
b) \(\bar{I} \bar{s}\) it correct to assume that this quantity is Gausian?
c) When can this assumption accurately be made?

QMPM
(i0) 2. As an axployee óf Pennsylvania Department of Transportátion, you are concerned with structural faults in steei I-beams used to congtruct bridges in the pittsburgh metropoiitan area: You inspect a shipment of I-beams from the International Steel Company: You ere told that the probability of a fault in ens given I-beam is 0.0005. What distribution do you expect the number of defective beams to follow? if there are \(N=4000\) I-beams in the shipment, what are the mean and variance of \(\bar{X}=\) number of defective I-beams in the shipment?
(10) 3. You are interested in the traffic flow off the 6thy 7th, and 9th Street Bridges into the North Side of Pittsburgh. On a specific Friday afternoon between 4 and \(\overline{6}\) p. \(\overline{\mathrm{m}}\).; you récord the time in seconds between cars as the cars drive off the 9th Street Bridge into the North Side.

You compute the average waiting time between automobiles to be 10 seconds:

Sketch the most likely probability function forcthe waiting times. With what random variable is this function associated?
(45) 4. In studying the records of Aggravation Airlines; it has been found that the actual arrival time of the scheduled 5:00 p.m. fíght from Philadelphia to Pittsburgh, due in at 6:00 p.m., is a uniformly distributed random variable in the range of 6:00 p.m. to 7:30 p.m. Let X=1 represent 6:00 p.m., X=2 represent 6:01 p.m., etc.
a) Write out the mathematical expression for \(f(X)\).
b) What is the probability that the plane will be late?
c) What is the probability that it will be more than 1 hour late?
( 5) 5. The number of potholes along a 100 yard stretch of the Parkway East is a Poisson Fandom variabie with a mean of 40 . What is the probability that along a specific 100 yard length there are no potholes? Leave answer in terms of a power and multiple of \(e\).
(20) 6. Consider the following data, giving the number of people arrested, by race and age, in 1976 in small town in Ohio:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Age} & \multicolumn{2}{|r|}{White} & \multicolumn{2}{|c|}{Black} \\
\hline & Arrested & Population & Arrested & Population \\
\hline 15-24 & 378 & 27,000 & 65 & 5;000 \\
\hline 25-44 & 324 & \(\overline{3} \overline{6}, \overline{000}\) & 32 & 4,000 \\
\hline 45-74 & 108 & 27,000 & 3 & 1,000 \\
\hline Totals & 810 & 90;000 & 100 & 10,000 \\
\hline
\end{tabular}

Assuming that an individual is drawn at random, find the probability of the following events:
a) A person is arrested.
b) A person who is arrested is whie.
c) A black person is between the ages of 25-74.
d) A person ia arrested, \(\overline{8}\) iven that he or \(\overline{\mathbf{s} h e} \mathbf{i s} 2 \overline{2}\) or over:
e) A person who is arrested; is black and aged 45-74.
f) A person, who is arrested; is aged 25-44.

\section*{894}
XVI.III. 95
(10) 7. You have a large population of individuals and have recorded the 1976 Federal Income Tax paid by aach individual. You break the population into 200 separate batches; and compute the mean and variance of the tax payments for each batch. Theoretically, what probability distribution should the variance of the tax payments follow?
(10) 8. In the articie The Use of Subjective Probability Methods in Estimating Demandi"; by Haña Schwara, what is subjective probability, and how does it differ from probability défined à reiative frequencies? How doés Schware use subjective probability to get reasonable estimates of demand ?
\[
895
\]
```

Quiz; Unit 5
Solutions

```
1. e) \(t\) distribution, on 13 degrees of freedom.

b) No:
c) Never can this asaumption be exact. However, when n > 30; approximating \(t\) by the Standard Gaussian distribution is generally acceptable.
2. Binomial; \(N=4000\); \(P=.0005\)
\[
\begin{aligned}
& \mu_{\mu}=N p=4000(.0005)=2 \\
& \sigma^{2}=\hat{N}(1-\bar{p})=2(.9995)=1.9990
\end{aligned}
\]
3. Exponential \(\quad 1 / \theta=10\)

4. a) \(f(X)=1 / 91 ; \bar{x}=1,2, \ldots, 91\).
b) \(90 / 91\)
c) \(30 / 91\)
5. \(e^{-40}\)

896

GHM
6. a) \(910 / 100,000=91 / 10,000\)
b) \(810 / 910=81 / 91\)
c) \(5000 / 10,000=1 / 2\)
d) \(467 / 68,000\)
e) \(3 / 910\)
f) \(\mathbf{3 5 6 / 9 1 0}\)
7. Multiple of a \(\bar{x}^{2}\) random variable
8. Subjective probability is derived from personai optnions about events that have occurred or will occur; rather than strictly from direct observations of past events.

Schwarz chooses arbitrary weighte for opinions about demand (will buy, may buy, won't buy) according to such factors as purchazer and expected date of purchase.

\section*{Reading Assignments \\ Unit 6}

Lecture
Iecéure 6-0

Lecture 6-1

Lecture 6-2

Assignment
Mosteller, Rourke; and Thomas, Sections 9-1 - 9-4

Mueller, Schuessier and costner Chapter 13
Mosteller, Rourke, and Thomss, Sections 10-1 - 10-4

Mueller, Schuessier and Costner Chapter 14
Mosteller; Rourke, and Thomas, Chapter 12

In addition please read the foliowing articles:
Tanur, pages 220-8
Tufte, pages 285-351, 391-406

\section*{Texts:}

Mostelier; F; et. aig; Probability with Statisticai Appiqcations; Second Edition. Rading. Missachusetts: Addison-Wesiey, 1970.
 Third Edition; Bostoñ Houghton Miffiln, 1977.

Tanur, J.; etialg editora, Statistics: A Guide to the unknown . \(\because\) San Franciecó Eolden Day. 1972.
 Reading, Massachusetts: Addison-Wesley, 1970.

CHPM
Lecture 6-0. Introduction to Unit 6

Introduction to Unit 6. Statistical Inference

\section*{Lecture Contont:}
1. Introduction to the objectives, problem, and notation of Unit 6

\section*{Main Topice:}
1. Specific Introduction to the Objectives of Unit 6
2. Presentation of Geñeral Problem of Unit 6
3. Notation for Unít 6

Topic 1. Specific Introduction to the Objectives of Unit 6
I. Questions to be answered in Unit \(\overline{6}\)
1. Is it ever possible to study an entire population?
a. Such a complete study is called a census; every individual in the population is sampled
b. Usually, the researcher only has the opportunity and ability to study a fraction of the population, called a sample
c. The findings of the study apply only to the sample; the sample statistics estimate the true population value
2. How much can we infer from these findings; in our effort to study the entire population?
a. This process of "extending" our analytical results is called statistical inference
b. The example illustrates the problem
3. Can we quantitatively assess how good an estimate is?
II. Skills to be mastered in Unit 6
1. Caiculation of probabilities using the Gaussian probability function
2. Making estimations about the values of parameters in the population
3. Placing intervals around these estimates to give a range of possible parameter values
4. Testing relationships concerning the variables in the population

Topic 2. Introduction to the Probiems of Unit \(\overline{\text { O }}\)
I. What is stāistical inference?
1. For a specific batch of data, obtained as a sample from a larger population, we compute various statistics:
a. \(\overline{\mathrm{p}}\) - proportion
b. \(\bar{X}=\bar{s} \overline{m p l e}\) meān
c. \(M \equiv\) sample median
d. \(I\) sample correlation coefficient
2. Thēse quantities are estimates of true population values, called parameters
a. \(\bar{X}\) estimates \(\mu\)
b. I éstimates \(\rho\)
c. \(\bar{P}\) estimates \(P\)
3. Statistical inference is concerned with how weil these \(\bar{s} t a t i s t i c s\) estimate population values
a. How mūch "faith" can we have in any given estimate?
b. Our notion of "faith" will be quantiffed through the use of probability, especially probabilities from the Gäussian dis̄tribution
4. Stātisticāl inference makes the risk associated with the use of à specific statistic explicit and known
II. Calculation of Gaussian probabilities
1. Suppose that \(\bar{x}\) is \(\bar{a}\) Gassian random variable; with mean \(\bar{\mu}\) and variance \(\sigma^{2}\)
a. Transparencs shows \(\bar{f}(X)\), and probabilíties associated with \#standard deviations from \(\mu\).
b. We desire to compute \(\mathbf{P}\{\bar{a} \leq \overline{\mathrm{X}} \leq \overline{\mathrm{b}}\}\) for some \(\mathbf{a}<\overline{\mathrm{b}}\).
2. We standardize \(X\) to a standard Gaussian random variable, and then use tabulated values of this standard distribution
\[
901
\]
3. For example:
\[
\begin{align*}
& \dot{P}\{a \leq \bar{X} \leq \mathrm{b}\}=\mathrm{P}\left\{\frac{\mathrm{a}-\mu}{\sigma} \leq \frac{\mathrm{X}-\mu}{\sigma} \leq \frac{\mathrm{b}-\mu}{\sigma}\right\} \\
&= \mathrm{P}\left\{\mathrm{Z} \leq \frac{\overline{\mathrm{b}}-\mu}{\sigma}\right\}-\mathrm{P}\left\{\mathrm{Z} \leq \frac{\overline{\mathrm{a}}-\mu}{\bar{\gamma}}\right\} \\
&\text { where } \mathrm{Z} \text {-Gau ( } 0,1) \tag{5}
\end{align*}
\]
4. Transparency shows Tables of Standard Normal Random Variable:
\[
\mathrm{P}\{\theta \leq X \leq a\} \quad \text { for } \quad a>0
\]
5. Remember:
\[
\text { a. } \begin{aligned}
& \mathrm{P}\{\mathrm{X} \leq \mathrm{a}\} \quad \text { whèrè } \quad \bar{a}<0 \\
&=\bar{P}\{X \geq-\bar{a}\} \quad \text { by symmetry }
\end{aligned}
\]
\[
\text { b. } P\{X \geq a\}=1-P\{X \leq a\}
\]
\[
\overline{\mathrm{c}}: \mathrm{P}\{-\infty<\mathrm{X} \leq \mathrm{a}\}, \mathrm{a} \leq \overline{0}
\]
\[
=.5+P\{0 \leq x \leq a\}
\]
(Work several examples using the Tables)
\[
902
\]

QEM

Topic 3. Notation for Unit 7
I. Conventions
1. Population values denoted by Greek letters \(\mu ; \bar{\sigma}^{2}\); \(\bar{p}\)
2. Sample estimates denoted by Latin letters
\[
\overline{\mathbb{X}}, \bar{s}^{2}, \mathrm{I}, \bar{b}
\]
II. Variables
i. \(X\), \(Y\) denote variables; \(X\), \(y\) are reaifzations

Lecture 6-0
Transparency Presentation Guide

Lecture

Outline Location

Transparency
Number
Transparency Description
Topic 1
Section I.
\(2 . b\)
Section II.
1.

Topic 2
Section II.
1.a

3
4
5
\(\overline{1} \quad \overline{I n f}\) erence Problem

2
Skills to be Mastered
3.
4.

Gaussian Probability Distribution Calculating Gaussian Probabilities

Normal Curve Areas

Infuence Probter
f5 an enployee of Datatoin International Aipoot plonning cominteteg you asis stecuying The location of the coffee shaps withn the auport rompore.
The question to be answurd is whences the on mon addetional goffic shops showed be opentd to Reducc rese waiting lines at the sole restamient now opresting.
You begin your nnalysis by going shouph Restamant neconds to nerond the picts of mialo, ondcrid ly she pations.
of rounse ot is not, fasibte to to shisfor all cuatomess / neronds are not computaiged).
Thesefors you must sampe.
You comput \(\bar{X}\) =arcuage picc pen mial.
How whel tors \(\bar{X}\) estionots \(\mu\), the
905
6-0
XVI.III. \(1 \overline{0} \overline{1}\)

Skills to be mastard in Unit 7
1. Culeulation of podobuthos using the Gaussion probobilety frnction
2. Making, estimations pout the valuers \&f The pasamettis in tuse population
- Plaung intarals anound these estrmatio to gre a nange of possedre pasimeter valuas
4. Tisting relationshige carcining the rasuablis on the perulation



ERIC

Uevectry Gauswan nobetrintos
\(\{\{x x \leq\}\}=P\{x \leq 6\}-P\{x=\}\)

\(x \operatorname{xob}=\boldsymbol{F}\left\{\frac{x-\mu}{\sigma} \leq \frac{d-\mu}{\sigma}\right\}\)



Standard Normal Table

Normal Curve Arent
Area under the atandard normal curve from 0 to s , showa abaded, is \(\mathrm{A}(\mathrm{z})\).
Examplen. It 2 is the standard sormal random verisble and \(=\mathbf{1 . 5 4}\), thea
\[
\begin{array}{r}
A(z)=P(0<2<\Sigma)=.1382, \\
P(Z>z)=.0818 \\
P(2<z)=.0382, \\
P(|z|<\Sigma)=.8764
\end{array}
\]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & . 00 & . 01 & . 02 & .03 & . 04 & . 05 & . 08 & . 07 & . 08 & - 00 \\
\hline 0.0 & . 0000 & . 1010 & Orso & .013) & 0100 & 0199 & .0239 & . 0279 & . 0319 & . 0359 \\
\hline 0.1 & .turs & .0.1.is & - 0:7 & .0516 & . 01535 & . \(05 \times 40\) & . 640 & . 06.5 & . 0174 & . 0.33 \\
\hline 0.2 & . 0743 & . 030 & .0871 & . 0310 & . 9878 & . 0157 & . 1026 & . 104 & . 1100 & .111 \\
\hline 0.8 & . 1179 & . 1217 & . 1253 & . 1293 & -1039 & . 3308 & . 1400 & . 1443 & . 1480 & . 8918 \\
\hline 0.4 & . 1854 & .1591 & . 1628 & :1064 & : 1760 & . 1738 & . 1778 & . 183 & . 1884 & 1879 \\
\hline 0.8 & . 1015 & . 1950 & . 1985 & . 2019 & . 2054 & . 2988 & . 2123 & . 2157 & . 2190 & . 2224 \\
\hline 0.6 & . 2257 & -201 & . 324 & . 2357 & . 2380 & . 2422 & -2454 & . 2496 & . 2317 & . 240 \\
\hline 0.7 & . 2580 & . 2611 & . 2042 & .24i3 & .2704 & . 2731 & . 2764 & 2794 & . 2823 & 2352 \\
\hline 0.8 & .2885 & -2010 & -27x & . 2007 & -2705 & . 3023 & - 3031 & - 2078 & . 3100 & .3133 \\
\hline 0.9 & . 3159 & .3185 & .321.* & . 3238 & . 3264 & .3284 & . 3315 & .3340 & . 3305 & . 2500 \\
\hline \(1: 0\) & . 3113 & :2183 & -34il & 3155 & . 303 & 3531 & . 3854 & . \(\mathbf{9 5 7 7}\) & . 3599 & 2081 \\
\hline 1.1 & -20.43 & -5405 & -30isi & 3708 & 3229 & .3549 & .370 & . 3750 & .3510 & 2850 \\
\hline 1.2 & -2049 & . 38019 & . 3788 & . 507 & . 3925 & . 3414 & . 35102 & . 350 & . 3038 & . 9015 \\
\hline 1.7 & . 4032 & . 7049 & - Iutiti & . 405 & -4039 & . 415 & . 1131 & . 1147 & . 1102 & . 41.7 \\
\hline 1:4 & . 4192 & - 1205 & - 1222 & 4336 & . 4251 & . \(42+5\) & . 4278 & . 4212 & . 400 & . 4318 \\
\hline 1.5 & . 4838 & . 4315 & . 4.357 & 4370 & . 4382 & . 4381 & . 4400 & . 4118 & . 4429 & . 4711 \\
\hline 1.6 & . & . 4196 &  & . 4 ¢ \({ }^{\text {¢ }}\) & . 493 & . 4 & . 4515 & . 4525 & . 4.55 & 4515 \\
\hline 1.7 & -4804 & -4.104 & . 4573 & . 455 & . 4501 & . \(43 \times 8\) & .4008 & . 4616 & . 41225 & 4083 \\
\hline 1.8 & . 4041 & -4619 & . 160 & . 401 & .4071 & . 4078 & -1086 & 4093 & . 4698 & . 4700 \\
\hline 1.8 & . 4713 & . 4719 & . \(472 i\) & .4732 & . 4733 & . 4174 & .4750 & . 4758 & . 460 & . 4767 \\
\hline 8.0 & . 4772 & - 478 & .4783 & 478 & . 4793 & . 4798 & .4M0 & 9903 & .412 & -4B17 \\
\hline 8.1 & . 4821 & . \(482{ }^{\circ}\) & . 4630 & 1534 & . 4818 & . 4542 & . 4816 & 4841 & 4SJ8 & 1558 \\
\hline 8.8 & . 4801 & . 4 4xi4 & . 48.4 & +531 & . 4875 & -45\% & . 1581 & +841 & 465\% & 4810 \\
\hline 8.3 & . 46013 & - 4 STE & . 45.19 & f!MII & . \(4 \times 14\) & FiMS & . IMTJ & .1911. & 1018 & \$916 \\
\hline 2.4 & . 4918 & .4Y24 & .4922 & . 41225 & . 4927 & .4523) & . 41831 & . 41332 & :4934 & devat \\
\hline 2.8 & . 0938 & . 7040 & . 4911 & . 4943 & . 4845 & . 9010 & . 4848 & - +240 & . 0951 & . 4158 \\
\hline & - 41053 & - 110 & . 9 95\% & . 9198 & . 405 & - 150 & . y Mí & . 4062 & . 4196 & . \({ }^{40 / 4}\) \\
\hline 6.7 & . 4905 & . 4806 & . 4907 & . 4946 & . 4969 & . 4970 & . 4971 & 1088 & . 4983 & +0\% \\
\hline 2.8 & -4074 & -4975 & . 4910 & -4077 & -4977 & -4088 & . 4470 & . 4979 & . 1090 & .4081 \\
\hline 8.8 & -6931 & -4882 & . 4982 & . 1483 & .4084 & . 4084 & . 4 He5 & -4085 & . 41905 & .4090 \\
\hline 8. & - & -487 & .4987 & .4938 & .4988 & . 4005 & -400 & . 8.900 & . 480 & . 0.00 \\
\hline
\end{tabular}
XVI.III. 110

Lecture 6-1: Quantifying Uncextainty of Estimates

Quantifying Uncertainty of Estimates with Confidence Intervals: Interval Bounds Between which the Population Parameter will fall with a specified frequency.

\section*{Lecture Content:}
1. Sampled data and parameter estimates
2. Quantifying certainty (or uncertainty) in our estimates

\section*{Main Topics:}
i. Notion of Confidence intervals
2. Caiculating Confidence Intervals
(There are no transparencies for this lecture.)

\section*{Topic 1. Notion of Confidence Intervals}
I. Generai Problem: Samplea data yield estimates of population parameters which will not be equal to the parameter. How can we quantif; the certainty (or uncertainty) that we have in our estimate?
II. Solution: Confidence intervals-interval bounde between which the population parameter will fall with specifiable prōabinity.
III. Skilis to master: Confidence intēvals for mean; regression coēfíciént, correlation coefficient, proportion.
IV. Speciffic Notions
1. Inference goes from sample to population. We measure a feature of the sample data and infer the value of the population parameter from this. Thus, we call the sample statistic an estimate of a parameter.
2. Parameter is constant. But from sample to sample measured estimate can vary.
3. Each estimate is a value of a random variable whose distribution may be known from theory or assumption.

Ex: means of samples are Normal in large samples.
4. Point éstmate: single value. But this may be in error. In fact, we don't expect it to equal the parameter: simply reporing the number gives no indication of how ciose we beifeve the estimate is to the parameter.
5. interval estimaté: bounde for an interval containing the point estimate (not necessarily symmetric) whith we know contains the parameter with certain probability
6. The probability that the interval covers the parameter is the confidence level. The interval is cailed a confidence Interval.
7. Note that since the parameter fails in the interval with certain probability \(<1\), it may not actualiy be in the interval. ( \(95 \%\) confidence means in 20 chancé of being wrong).
\[
913
\]

\section*{Topic 2. Calculation of Confidence Intervals}
i. Specifíc Methods
1. The normal approximation for \(\overline{\mathrm{X}}\).

The population mean, \(\bar{\mu}\) is estimated by the sample mean, \(\bar{X}\). an unblased estimate of \(\mu\) since \(E(X)=\mu\) :
2. What is ites "sampling" distribution?

From statistical theory (central limit theorem), regardiess of distribution of original \(x^{\prime} s\), frequency distribution of \(\bar{X}\) in repeated random samples of size \(n\) tends to the Normal as \(n \rightarrow \infty\)
(Note that the cioser to normal the original distribution, the smaller \(n\) can be for using normal approximation. Others may require \(\bar{n}-\gg 100\). The more skewed \(x\), the larger n should be)
3. What is its standard deviation? (Often called standard error because it indicates the amount of error in using \(\bar{X}\) as a measure of \(\mu\) ).
\[
\sigma \bar{X}=\sigma / \sqrt{n}
\]
4. Since \(\overline{\mathrm{X}}\) is normaliy distributed (for repeated random gamples and large \(\bar{n}\) ) and we know its expected value and standard deviation, wé can construct a standardized normal devíate:
\[
z_{\bar{x}}=\frac{\overline{\bar{X}}-\mu}{\bar{\sigma} / \sqrt{n}}
\]
5. Now we can specify the probability that \(X\) lies between two ifmiting values \(\mathrm{L}_{\mathrm{i}}\) and \(\mathrm{L}_{2}\) by determining the probability that \(\bar{z}\) ifes between \(L_{1}\) and \(L_{2}\) and this we do by examining a table of the percentage points of the cumulative normal.

\section*{914}
XVI.III. 113
II. Confidence intervals for \(\mu\) : \(\sigma\) known. (Example: IQ scores)
1. Random sample of size \(n, \bar{X}-\bar{N}(\mu, \sigma / n)\)

If \(Y\) is drawn from \(N(\mu, \sigma)\)
\[
P\{p-1.960 \leq y \leq \mu+1.96 \sigma\}=.95
\]

Thus, if \(\overline{\mathrm{X}}\) is drawn from \(\mathrm{N}(\mu, \sigma / \sqrt{n})\)
\[
P\{\dot{\mu}-1.96 \bar{\sigma} / \sqrt{n} \leq \bar{x} \leq \mu+1.96 \sigma / \sqrt{n}\}=.95
\]
or
\[
(\bar{x}-1.96 \sigma / \sqrt{n} \leq \mu \leq \bar{x}+1.96 \sigma / \sqrt{n}) \text { is our interval. }
\]

Thus the 95\% confidence interval for \(\mu\) is
\[
\overline{\mathrm{x}} \pm 1.960 / \sqrt{\mathrm{n}}
\]

Since \(\boldsymbol{\mp} .58\) contains \(99 \%\) of the standard normal, \(99 \%\) conf. Ifmits are
\[
\bar{x} \pm 2.58 \sigma / \sqrt{n}
\]

In general; \(p \%\) confidence levels are
\[
\bar{x} \pm \bar{z}_{p} \sigma / \sqrt{n}
\]
where \(Z\) is a value in the cumulative normal table such that the area
(One sided tests use \(Z_{\bar{p}}\) such that area is p .)
2. Sampié size

We want estimate accurate to \(\ddagger\) set probability of \(\bar{X}\) lying bétween \(\pm \mathrm{L}=.95\), sày.

Then
\[
P\{\bar{\mu}-L \leq \bar{X} \leq \mu \quad+L\}=.95
\]

But \(\mathrm{P}[\mathrm{\mu}-1.96 \sigma / \sqrt{n} \leq \mathrm{X} \leq \mu+1.96 \sigma / \sqrt{n}\}=.95\)
Thus \(\mathrm{L}=1.96 \bar{\sigma} / \sqrt{\mathrm{n}}\).

Making 1.96 ~ 2 we have
\[
\begin{array}{lll}
\bar{n}=4 \sigma^{2} / L^{2} & \text { for } & 95 \bar{z} \text { prob. } \\
\bar{n}=6.6 \sigma^{2} / L^{2} & \text { for } & 99 \% \text { prob. }
\end{array}
\]
3. \(\sigma\) unknown
a. Use s as estimate of \(\sigma\). It is based on ( \(n-1\) ) degrees of freedom. Now
\[
t=\frac{\bar{x}-\mu}{s / \sqrt{n}}
\]
\(t\) differs from \(N(0,1)\) only when \(n \leq 30\).
b. P\% confidence intervals
\[
=\overline{\mathrm{x}}+\mathrm{t}_{\overline{\mathrm{p}} / 100 \cdot 1 / 2} \mathrm{~s} / \sqrt{\pi} \text { where } \mathrm{t} \text { has } \mathrm{n}-1 \text { d. } \overline{\mathrm{f}} .
\]
4. Regression coefficient
\[
t=\frac{b_{i}-B_{i}}{S_{b_{i}}} \quad \text { on } n-\bar{k} d f
\]

How is \(\overline{\mathrm{s}}_{\mathrm{b}_{\overline{\mathrm{I}}}}\) computed?

usc residual variance

\(\left(\begin{array}{lll}\text { numerator is standard error of regression } \\ \text { denominator } \\ \text { is } & (n-1) \text { standard error of } & X_{i}\end{array}\right)\)
916
\[
=\sqrt{\frac{\Sigma\left(\bar{y}_{\dot{1}}-\hat{\hat{y}_{\dot{1}}}\right)^{2}}{(n-2) \Sigma\left(\overline{x_{i}} \bar{x}\right)^{2}}}
\]

Then č confidence intervals are
\[
\hat{\beta}_{i}=\hat{\beta}_{i} \pm \dot{\tau}_{c / 100 \cdot 1 / 2} \bar{S}_{b_{i}}
\]
5. Correlation coefficient
\[
\begin{aligned}
& \text { Fisher's } \mathrm{s} \rightarrow \mathrm{Z} \text { transformation } \\
& \bar{Z}=\frac{\overline{1}}{2}\left[\log _{e}(\bar{l}+r)-\log _{e}(\bar{l}-r)\right] \sim \tilde{N} \\
& \bar{\sigma}_{\bar{z}}=\frac{i}{\sqrt{(n-3)}} \\
& r=\frac{\Sigma(\bar{X}-\bar{X})(\bar{Y}-\bar{Y})}{\sqrt{\Sigma(X-\bar{X})^{2} \Sigma(\bar{Y}-\bar{Y})^{2}}}=\frac{\operatorname{Cov}(\bar{X}, Y)}{\sigma_{x} \sigma_{Y}}
\end{aligned}
\]

Then p\% confidence intervai:
\[
\bar{\rho}=\bar{z} \pm \bar{z}_{p / 100 \cdot 1 / 2} \sqrt{(n-3)}
\]
6. Proportion

If \(\overline{\mathrm{r}}\) of n have attribute proportion in population, \(\hat{\bar{p}}=\bar{r} ;\) When \(\bar{n}, \gg 30, \bar{p}\) is \(N(\bar{p} ; P Q / n)\); use \(p\) and \(\bar{q}(=1-p)\) to estimate \(\bar{p}, \bar{q}\) and \(\bar{c} \%\) confidence interval
\[
\bar{p}=\hat{p} \mp z_{c} / 100 \cdot 1 / 2 \sqrt{\hat{p} \hat{q} / n}
\]
when \(\bar{n}\) is small use
\[
P=\hat{\hat{p}} \pm\left(\mathcal{Z}_{c / 100 \cdot 1 / 2} \sqrt{\hat{p q} / n+1 / 2 n}\right)
\]
(Cāéful when \(\bar{p}\) and \(q\) are not near.\(\overline{5}\) and \(\bar{n} \mathbf{i s}<75\) )
XVI.III.116 \(91 \%\)

\section*{Lecture 6-2. Significance Testing}

Significance Testing: Determining the reasonableness of a hypthesis

\section*{Lecture Content:}
1. Null hypotheses: \(H_{0}\)
2. Determining whether to reject or not reject \(\mathrm{H}_{0}\)
3. Significance Levels

Main Topics:
1. Significance Tests: Concepts
2. Significance Tests: Techniques

\section*{Topic 1. Significance Tests: Concepts}
I. Problem=Sometimes a point value for a population parameter is assumed or hypothesized. How car samp! .asuits be used to test the reasonableness of the hypothe
II. Solution=significance tebt-caiculate a cest sitēion from the \(\bar{a}\) ample datá; if it falls into a region of rejection, the null hypothesis, i.e.; the hypothéize: value for the parameter, is rēécted and the departure is called statisically significant. If the null hypothesis is true the test nas a known probability of obtaining a significant result which is calied the significance level of the test.
III. Notion of a null hypothesis
A. Considerations
1. This is a statistical hypothesis, an assertion that the population parameter has a certain value. it is called null because the assertion is that there is no difference between the hypothetical value and the parameter's actual value. This is nonetheless hypothetical because we have no evidence (yet) that the hypothesized and true values are equal.
2. This leads to a decision making situation. We want to construct a procedure with which we contrast the null hypothesis with evidence drawn from sample data.
3. If the value computed from the data is "very different" from the nuil hypothesis we reject it. If it is "similar" we do not reject it.
4. The null hypothesis can describe a single parameter, such as a regression coefficient or a difference in parameters, such as the difference in means.

\section*{B. Notion of a rejection region}
1. How can we specify what is a "very different" value lending to rejection or a "similas" value leading to non-rejection?
2. Use probability. If we know the samping distribution of the estimate under the null hypothesis then we can compute the probability of observing a value like that computed from the sample data. (Exactly, in fact.)
3. When this probability is quite smail, we can argue that that the observed value is unlikely to be an observation on à random variable with parameter equal to the nuil hypothesized value. Thus the data lead us to reject the null hypothesis or, we say,they fail to confirm it.

Example:

\(Y\) may have arisen from \(f\left(Y / X_{0}\right)\) but such a value is aimost a rare event in this distribution: We must decide whether the rare event occurred, or whether \(X_{0}\) seems reasonable as the parameter of the distribution.
4. We can establish levels which bound smali areas of probability such that if the observed value fails beyond the inner bounds of the levels we agree to reject the null hypothesis. These are the rejection regions. Between the limits lies the acceptance region.

5. If we have no idea on wilich side of the null hypothesis \(\bar{\tau} h e\) sample vālūe will fall (disjoint alternative hypothesis) we need two levels. If we have a prior idea (one alternative hypothesis) we need only one tevel. In the first case we have a two tailed test, two rejection regions in the tails of the assumed distribution. In the latter case we have a one tailed test.
c. Notion of power of a test
1. The estimate of the parameter calculated from the sample is an observation on a random variable whose sampling distribution is known when the nuil hypothesis is true.
2. Since the probability of observing a rare value is smaly but nonetheless positive sometimes a value falling in the rejection region will be faiseiy rejected.
3. The probability of rejecting a true nuil hypothesis is the Bignificance level of the test. It is equal to the area in the rejection regions and is 1 minus the confidence level.
4. The probability of rejecting a false null hypothesis is the power of the test.
D. Types of errurs in decision making


To reduce type \(\bar{I}\) error ( \(\alpha\) ) increasé confidènce; \(i, \bar{e} ., \overline{m i n} . \alpha\)

To reduce type \(I I\) error \((\beta)\) increase power, i.e. minn \(\bar{\beta}\)
There is a trade off between type \(\bar{I}\) and type \(\bar{I} \bar{I}\) érrors. In general when one decreases, the other increases.
\[
921
\]

Topic 2. Significance Tests: Techniques
i. General procedure:
1. Determine tést statistic
2. Establish nuil hypothesis
 null hypothesis.
4. Set levels for rejection (or simply report p vaiue) usually \(.1,05,01\). (Discuss looking up critical values in appropriate table of the distribution)
5. Perform test
II. Examples

Compute \(\bar{z}_{\bar{X}}=\frac{\bar{x}-\mu_{0}}{\sigma \bar{x}}=\frac{\bar{x}^{-}-0_{0}^{0}}{\sigma / \sqrt{n}}\)

I's \(\left|Z_{\bar{X}}\right|>\bar{Z}_{\alpha}\) ? \(\overline{I f}\) yes, rejecter \(\bar{H}_{0}\) at \(\alpha\).
2. Fōr \(\mu ; \sigma\) unknown, \(n \geq 30: \mathrm{H}_{0}=\mu_{0}\)
use \(s / \sqrt{n}\) to estimate \(\bar{\sigma} / \sqrt{n}\) and proceed as above.
3. For \(\mu ; \sigma\) unknown, \(n<30: H_{0}=\mu_{0}\)
\[
t \equiv \frac{\overline{\bar{X}}-\mu_{0}}{s \cdot \bar{x}}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}} \quad \text { where } t \text { has }(n-1) d f
\]
4. Two méans from independent samples

\section*{Note:}
a. Difference between two normally distributed random variablès is normal
b. \(\quad \bar{\sigma}_{x_{1}-x_{2}}^{2} \equiv \sigma_{\bar{x}_{1}}^{2}+\sigma_{\bar{x}_{2}}^{2} \quad\) where \(\bar{x}_{1} \bar{\delta} x_{2}\) are i.i.d. \(\operatorname{Then} \frac{\left(\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}\right)=\left(\mu_{1}-\mu_{2}\right)}{S_{X_{1}}-\bar{X}_{2}} \quad\) is test statistic
c. If the \(\bar{X}_{i}\) are drawn from some population \(n_{1}=n_{2}\) with variance \(\sigma^{2}\) known thèn
\[
\sigma_{\bar{x}_{1}}^{2}=\overline{\bar{x}}_{2}=2 \sigma^{2} / \bar{n}
\]

With known o use 2 With unknown o use
pooled \(s^{2}=\left(s_{1}^{2}+s_{2}^{2}\right) / 2 ;\) thas \(2(n-1) d f\)
d. \(n_{1} \not n_{2}\) then \(\sigma_{\bar{x}_{1}}^{\overline{2}}-\bar{x}_{2}=\sigma^{2} \frac{n_{1}+n_{2}}{n_{1} n_{2}}=\frac{\bar{\sigma}^{2}}{n_{1}}+\frac{\bar{\sigma}^{2}}{n_{2}}\)
and when \(\sigma\) is unknown
o unknown use
\[
\bar{s}_{\bar{x}_{1}-\overline{x_{2}}}^{-\frac{s^{2}}{n_{1}}}+\frac{\bar{s}^{2}}{n_{2}} \text { where } \bar{t} \text { has } n_{1}+n_{2}-2 \text { d.f. }
\]
5. Corrēlātion coefficient

Use Fishēr's transformation
\[
\bar{e}=\frac{1}{2}\left[\log _{e}(\bar{i}+\bar{r})-\log _{e}(1-r)\right]
\]
which hàs \(\sigma_{z}=\frac{1}{\sqrt{(n-3)}}\)
and proceed as with normally distributed test statistic.
6. Regression coefficient
\[
t=\frac{\mathrm{b}_{ \pm}-\beta_{0}}{\mathrm{E}_{\mathrm{b}_{i}}}
\]
where \(t\) has ( \(n-\bar{k}\) ) d. \(\bar{f}\). and \(\bar{k}\) is tot: : wever of parameters being estimated.
7. Regression
\[
\frac{R^{2} /(\bar{k}-1)}{\left(1-R^{2}\right)(\bar{n}-k)}-F_{\bar{k}-1 ; \bar{n}-\bar{k}}
\]
if no linear relationship exists tetween \(\underset{\sim}{y}\) and \(\underset{\sim}{X}\).
where \(\bar{k}\) is number of parameters éstianted and \(n\) is sample size.

Lecture 6-2
Transparency Presentation Guide
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Lecture \\
Outline \\
Location
\end{tabular} & Transparency Number & Transparency Description \\
\hline \multicolumn{3}{|l|}{Topic 1} \\
\hline \[
\begin{gathered}
\text { Section III } \\
0.4
\end{gathered}
\] & 1 & One Sided Test \\
\hline C. 4 & 2 & Two Sided Test \\
\hline
\end{tabular}

\footnotetext{
\(8:\)
}

One sided 7tst
\[
\begin{gathered}
A=\theta \cdot \theta_{0}=\theta>\theta_{0} \\
0, \theta)
\end{gathered}
\]


Relation betweon significance level, power and types of orrors in hypothosis tosting.


Rejpect \(\theta_{0}\) \& \(\hat{\theta}_{0}>\theta_{\mu}\) or \(\hat{\theta}_{0}<\theta_{L}\)
shaded uea \(=\alpha\) (4/2 in mant tail, \(y\) rymm.)
Prapjectinc ow whon \(N\) is thee \(\}\)

We specify \(\alpha\) in advance -
contel for Type / essar ät
We to nof control far Tyoe 2 ovon nett

want \(\beta\) os small as posctho
os \((1-\beta)\) e "Pouch as tuge os possuble
\[
926
\]
\[
6-2
\]

\section*{Homework - \\ Unít 6}
1) Of the 3,017 families in Ellwood City, PA in 1970, a random sample of 300 families was taken to determine the mean family income. A \(95 \%\) confidence interval ( \(\$ 8,812\) to \(\$ 9,116\) ) was established on the basis of the sample.

Using only the above information coment on the truthfulness of the following sitatements:
a) Of all possible samples of size 300 drawn from this population, \(\mathbf{9 5 \%}\) will hāve छample means between \(\$ 8,812\) and \(\$ 9,116\).
b) Of all possible samples of size 300 drawn from this population, \(\mathbf{9 5 \%}\) will hāve population means bétween \(\$ 8,812\) and \(\$ 9,116\).
c) of all possible samples of size 300 drawn from this population, \(\mathbf{9 5 \%}\) of the confidence intervais will contain the true population mean.
d) \(95 \%\) of the families in Ellwood city have incomes in the range \(\$ 8,812\) to \(\$ 9,116\).
2) One can always decrease the width of confidence interval by increasing the sample size. Why then does one not always determine the desired width and sample accordingly?
3) Suppose you are interested in the proportion of families in the United States that have 4 or more children. Let the true populafíon proportion be \(\bar{P}\). Since your office does not have a copy of the current Statistical Abstracts, you are ingtructed to estimate \(P\) based on a very bmall sample of 1,000 families.
a) Let \(\bar{p}\) be the estimate of \(\bar{p}\) from your sample. What is the (large) sampling distribution of \(\bar{p}\) ?
b) Suppose we found a \(\bar{p}\) of 125 Construct \(\bar{a} 90 \%\) confidence interval about \(p\) based on these sampling results. What do you report to your eupervisor concerning the true population proportion? In policy context, when would the point estinate \(p\) be preferred to the \(90 \%\) confidence interval?
c) Suppose that \(n\) is quite smail, and \(\bar{P}=90\). Explain why the sampling distribution of will be asymetric, and tell your supervisor why the Gaussian approximation is inaccurate in this instance.
\[
927
\]
4) Suppose that as an employee of HEW, you are studying the effect of the apparent decline in intelligence exhibited by high school upperclassmen on the allocation of federal funds to public schools. You have SAT scores for high school seniors throughout the country for 1966-1975.

It is a well known fact that an individuai's score on the Mathematics Scholastic Aptitude Test, administered by the College Entrance Examination Board, is a random variable with mean 500 ; standard deviation 100; moreover; for ail but very specific purposes; it is Gausian.
 than 700?
b) What is the probabiiity that a score is between 400 and \(\overline{6} 50\) ?
c) Two sisters eari have scores between 500 and 550. What is the probability of the simultaneous occurrence óf these two seemingly independent events?
d) Your supervisor states that the simpie assumption you used to caiculate the probabiifity in (c) (independence) is not at all correct. Why?
5) You are conducting a study for a dean of a highly regarded school of public policy into the ages of incoming master of pubiic administration students. Your data consist of 22 students.
a) You find that \(\bar{X} \equiv 24.5\) years, and \(\bar{S}^{2} \equiv 2\). years , with \(\bar{n} \equiv 22\). Construct a \(92 \%\) confidence interval nid interprét your resuits.
b) In what way (s) is your confidence interval similar to a hypothesis test?
6) The National Training and Development Service has kindly given you data on the evaluation of 195 proposals for curriculum development. Each proposal is submitted to one of 8 need areas.
our data analyais reveals that page length and the indicator variabie Gr need area 3 are important determinants of the finai score awarded to a proposal.
 iength \()^{2}\), and need area 3 was consiruced. Resulss are given below:
\begin{tabular}{|c|c|c|c|c|}
\hline & Pages & \((\text { Eres })^{2}\) & \begin{tabular}{l}
Ind cator \\
MeさJA.EA 3
\end{tabular} & Constant \\
\hline Coefficient & 1.540 & -. 024 & -\%. 085 & 41.884 \\
\hline Standard error & . 271 & . 0058 & 2.0.54 & \\
\hline \(\mathrm{R}^{2}=0.19\) & & & & \\
\hline \(\mathrm{p}=195\) & tot & anaed eco & \[
\begin{aligned}
& \text { gax }=90) \\
& 9.3 .5
\end{aligned}
\] & \\
\hline
\end{tabular}
a) Test the hypothesis that the model relating y to the 4 carriers is not additive; and hence that no linear regression exists.
b) Place confidence intervais about the least squares coefficients for pages and (pages) \({ }^{2}\) -
c) Coment on the results of (a) and (b). How can you explain the rather contradictory finding of such a small \(\mathrm{R}^{2}\) ? Would a stem-and-leaf display of the residuās be useful?
7) in a random sample of 1,000 individuals, 600 were in favor of capital punishment. Test the hypothesis \((\alpha=.10)\) that individual attitudes in the population are equally divided for capital punishment and against it.
8) You have access the grade reports of 9 students in the ciass. You find that the sample correlation between undergraduate GPA and fall term OMPM grade is only 0.15 . Can you conclude that there is no relationship bétween thésé 2 variables?
9) A linear regression model relates the response Enigration from 33 SMSA's with populations greater than 500,000 to 3 carriers: welfare payments per capita, immigration into the SMSA, and average annual temperature.

The results:
\begin{tabular}{lccc} 
& Coefficient & t-statistic & standard error \\
& -0.1978 & & \\
Constant & 0.3324 & 17.94 & 0.0185 \\
Welfare & 0.0046 & 2.14 & 0.00215 \\
Immation & 0.0026 & 1.34 & 0.00192 \\
Temperature & & & \\
\(\bar{\sigma}^{2}=0.00482\) & & & \\
\(\mathrm{R}^{2}=0.9394\) & & &
\end{tabular}

Comment on these results by constructing hypothesis tests, with \(\alpha=.05\).
10) In a sample of 400 professors, you find that the average annual salaiy is \(\$ 23,200\), with a standard deviation of \(\$ 4 ; 000\). Test the hypothesis that the population value is \(\$ 25,000\). Let the probability of a Type 1 error be . 10 .

920

\section*{Homework Solutions \\ Unit 6}
1. The oniy vaiłd statement is (c): This is precisely what we mean by a \(95 \%\) confidence interval. Remember; we are examining a confidence interval for the one (oniy one) population mean. We calculate the interval using a random sample:
2. The cóst of taking a larger sample may be uneconomical in terms of return on the sample info - or the sample size may be limited by other factors such ās physical; time, moral/ethical, etc. constraints: We usually predetermine \(\bar{n}\) as the largest sample sizé possible within time, cost, availability, etc. constraints.
3. (a) A normal distribution may be used to approximate the samping distribution of \(p\). Although the ratio of \(p: q\) ( \(q\) being the percentage of families with fewer than 4 children) is itkely to be considerably less thau \(\overline{5}=\overline{5}\); the sample size is sufficiently lare to counror any resulting skewedness (Note that although 1; 000 Eamilies is a small sample of the total number of familiēs is the country, it is a large sampie from the standpoint of devaloping samping distributions. Tie distribut́on will have an estimated mean ( \(\mu_{F}\) ) and stancarc deviation \(\left(\bar{\sigma}_{p}\right)\) of \(P\) and \(\frac{\sqrt{\overline{2} Q}}{1000}\) respectiveiy.
(b) We have been given the sample size (1000) and the sample mean ( \(p\). i25). We are asked ro détermine the critical vaiue boundaries (limits of the estimates of the mean) within which we can be \(90 \%\) sure that the true population mean wili fall. The calculations of these values are as follows:
\[
\begin{gathered}
P \bar{r}(p-z \sqrt{p g} \leq P \leq p+\underset{n}{n})= \\
.125-1.65 \sqrt{1.00011} \leq P \leq .125+1.65 \sqrt{.00011} \\
-108 \leq P \leq .142
\end{gathered}
\]

We prefer a point estimate ō \(\overline{\mathrm{f}}\) when wē need tó make decisions based on a particular value of \(\bar{P}\) (e.g. how much should be budgeted to provide a good to every 4 child family.)
(c) The shape of the sampling distribution depends on sample size and the relationship of \(P\) to \(Q\). As the ratió of \(\bar{P}\) to \(Q\) departs from 1 , the distribution becomes increasingly skewed: The greater the skewedress, the more likely it is that the samples means will be dístorted. Large samples "smooth out" this distortion so that the sample distribution of the percentage approaches the normal.
\[
930
\]

\section*{GMPM}
4. (a) Let \(X=\) the individual's score

We want to find \(\operatorname{Pr}(X>700)\) which is equivalent to \(1-\operatorname{Pr}(\bar{X}\) E 700) We can subtract the popuiztion mean and divide by the standard deviation on either side of the inequality. Since \(z\) is of the form \(\frac{X-\mu}{}\), the probability determination can readily be made. The calculations are:
\[
\begin{aligned}
\operatorname{Pr}(X>700) & =1-\operatorname{Pr}(X \leq 700) \\
& =1-\operatorname{Pr}\left(\frac{X-500}{100}<\frac{700-500}{100}\right) \\
& =1-.9772 \\
& =.0228
\end{aligned}
\]
(b) By the same logic as above
\[
\begin{aligned}
\operatorname{Pr}(400 \leq x \leq 650) & =\operatorname{Pr}\left(\frac{400-500}{100} \leq \frac{x-500}{100} \leq \frac{650=500}{100}\right) \\
& =\operatorname{Pr}(-1 \leq z \leq 1 . \\
& =3413+.4332 \\
& =.7745
\end{aligned}
\]
(c) First we find the of occurrence of a score between 500 and 550
\[
\begin{aligned}
\operatorname{Pr}(500 \leq \mathrm{X} \leq 5 \overline{5} 0) & =\operatorname{Pr}\left(\frac{500-500}{100} \leq \frac{X-500}{100} \leq \frac{550-500}{100}\right) \\
& =\operatorname{Pr}(0 \leq \bar{z} \leq .5 \\
& =.1915
\end{aligned}
\]

If the events are truly independent then the probability of their simultaneous occurrence is the prodact of their probabilities. Since both eventes have probabilities of .1915, the joint probability is : (.1915) or 0 . 0367 .
(d) He is right because the sistērs share similar genetic makeup and environmental experience. Both factors can influance intelifgence. The events aire therefore not independent and the probability of both scores being between 500 and 550 is probably greater than . 0367 .
 smail. The confidence interval is constructed as follows:
\[
\begin{gathered}
\overline{\bar{X}}-\bar{t} .04(\overline{\bar{\gamma}} \overline{\bar{\mu}}) \leq \mu \leq \bar{X}+t .04(\overline{3}) \\
24.5-2.1\left(\frac{1.45}{\sqrt{22}}\right) \leq \mu \leq 24.5+2.1\left(\frac{1.45}{\sqrt{22}}\right) \\
23.35 \leq \mu \leq 24.65
\end{gathered}
\]

There is a \(92 \%\) chance that this interval will contain the true mean of ages.
(b) To tēét whether a given population mēan is the same ā anothex a confidence interval may be establishē. This intervāl corresponds to the region of "non-rejection" of the null hypothesis.
4. (a) The nuil hypothesis to be tested is \(H_{0}: R^{2}=0\) The \(F\)-distribution is appropriate here.
\[
\begin{aligned}
& R^{2} \\
& \because-R^{2} \frac{\mathrm{~N}=\mathrm{p}}{\mathrm{~F}-1}
\end{aligned}=\frac{.19}{.81} \cdot \frac{191}{3}
\]

Reject \(\mathrm{H}_{0}\). There is a Inear relationship.
(b) Pages
\[
\begin{gathered}
\left(1.54-t^{2} .05(.271)\right) \leq \bar{\beta}_{1} \leq\left(1.54+t_{1} .05(.271)\right) \\
(1.54-1.96(.271)) \leq \beta_{1} \leq(1.54+1.96(.271)) \\
1.00 \leq \beta_{i} \leq 2.07
\end{gathered}
\]

Pages 2
\[
\begin{gathered}
\left(-.024-1.96\{.0058) \leq \beta_{2} \leq(-.024+1.96(.0058))\right. \\
=.035 \leq B_{2} \leq-.013
\end{gathered}
\]
(c) Neither confidence interval contains 0 . Hence both carriers expiain a portion of the total variation. Also, the additive modei is consistent with the data since \(N\) is large; even though \(\mathrm{R}^{2}\) is small. An examination of residual plots would bē informative.
\[
932
\]

\section*{QMPM}
7. Large sample, testing for \(\frac{\bar{P}}{Q}=1\).
\[
\begin{aligned}
& \mathrm{H}_{0}: \bar{P}=.5 \\
& \mathrm{H}_{1}: \mathrm{P} \neq-5 \\
& z=\frac{.6=.5}{\frac{(.6)(.4)}{1000}}=\frac{.1}{.015} \\
& =6.67 \\
& z_{.05}=1.65
\end{aligned}
\]

8. \(\bar{H}_{0}: \rho=0\)
\(\mathrm{H}_{1}: \rho \neq 0\)
\[
\begin{aligned}
z & =\frac{.15-0}{\sqrt{\frac{1}{6}}} \\
& =\frac{.15}{.41} \\
& =.37
\end{aligned}
\]

Since calculated \(\bar{z}<\mathrm{Z}_{.05}, \mathrm{H}_{0}\) cannot be rejected

 Temperature is not Bignificant at the \(5 \%\) level
\[
\begin{array}{rlr}
\frac{\mathbf{R}^{2}}{1-\mathbf{R}^{2}} \cdot \frac{\mathrm{~N}-\mathrm{p}}{\mathrm{p}-1} & =\frac{.9394}{.0606} \cdot \frac{31}{2} \\
& \overline{=} 15.5 \cdot 15.5 \\
& =240.25 & \mathrm{~F}_{2,31 ; .05}=3.32
\end{array}
\]

There is clearly a linear relationship
\[
\text { Emigration }=\text { Constant }+\beta_{1} \text { Welfare }+\beta_{2} \text { Imigration }
\]
10. \(\mathrm{H}_{0}: \mu=25,000\)
\(H_{1}: \mu \neq 25,000\)
\[
933
\]
\[
\begin{aligned}
z & =\frac{23,200=25,000}{\frac{4000}{\sqrt{400}}} \\
& =\frac{-1800}{200} \\
& =-9 \\
& =-9<-1.65 \quad \therefore \text { reject } H_{0}
\end{aligned}
\]
\[
934
\]

\author{
Uñit 6 Quiz
}

Náme: \(\qquad\)

Write all your answers on these pages. Point totals are given in parenthesea prior to each question. You have forty (40) minutes for this quiz.
(45) 1. You have estimated a innear model relating the response singie fanily housing startes in Pittsburgh (Y) to carriers Median Price of a new unit in thousands ( \(X_{1}\) ), \% Unemployment ( \(X_{2}\) ), and Population in thousands ( \(x_{3}\) ). You collect data for 1960-1972. The model is
\[
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+e .
\]

Least squares estimates of the parameters are
\[
\underset{\sim}{b}=\left(\begin{array}{c}
b_{0}^{-} \\
b_{1} \\
b_{2} \\
b_{3}^{-}
\end{array}\right) \quad=\left(\begin{array}{c}
57363 \\
-182.5 \\
222 \\
-19.1
\end{array}\right)
\]
and diagonal terms of the variance-Covariance Matrix are
\[
s^{2}(x X)^{-1}=\left(\begin{array}{cccc}
3.38 \times 10^{8} & & \\
- & 4.48 \times 10^{3} & & \\
-- & = & 2.70 \times 10^{3} & \\
-- & - & - & 5.04 \times 10^{1}
\end{array}\right)
\]
and \(\mathrm{R}^{2}=.902\).

935
(a) Last term we stated that in testing the importance of a coefficient in a linear model, you should consider the carrier "important" if the t-statistic was greater than 2 or 3 in absolute value. Why?
(b) Does the carrier \(X_{3}\) differ from zero?
(c) What hypothesis do you test to determine whether or not the response ís ineariy related to the set of carriers ās a whole? Under the nuli hypothesis; the test statistic is distributed às à specífic random variable. Which distribution is it, and why is this the correct one?
(25) 2. Your supervisor states that \(5 \%\) of census tracts in Pittsburgh have median family size greater than 6 individuals/ family. In disbelief, you gather data on the 86 census tracts and find that median family size per tract is remarkably well behaved, with \(\mu=4.5\) and \(\sigma^{2}=.20\). Is your supervisor correct? Why or why not?
(30) 3. The computer center at Robber Baron University claims a \(95 \%\) avai lability for their HAL-250 computer. You are somewhat skeptical of this statement, so you gather data for the 30 days that you used the system for your latest paper. You calculate the average availability to be \(85 \%\) with associated standard deviation \(\frac{8}{\sqrt{n}}\) of \(5 \%\).
(a) construct a \(95 \%\) confidence interval for the true percentage.
\[
937
\]
(b) Based on this interval, state and i. \(\therefore\) a hypothes \(\overline{3}=05\). to determine the truth of the cor ute. enter's afiarion.
(c) Are the distributional assumptons that you made to test the hypothesis in (b) appropriate? Why or why not?

JABLE III
The Normal Distribution

from: Hogg, R. \(\overline{\mathrm{V}}\) : \(\overline{\mathrm{a}} \overline{\mathrm{d}} \overline{\mathrm{A}} . \mathrm{T} . \mathrm{Craig}\), Introduction to Mathematical Statistics, Third Edition, New York: Macmilian, 1970.

Quiz Unit 6 Solutions
1. a) We have been implicitly texting the hypothēees that our \(\bar{\beta}\) coefficients are zero. We know that \((\beta-\hat{\beta}) / \bar{s}\), is distributed as a a random variable with Nop degrecs of freedom (N observations; \(P\) variables): For large \(N^{-p}\) and \(\quad B_{=0}\); \(95 \%\) of the है's \(^{\prime}\) will fail in the interval ( \(-2,2\) ). A t-statistic outside of that interval allows to reject the hypothesis that \(\bar{\beta}=0\). For smaller degrees of freedom, we use the larger interval \((-3,3)\).
b) \(\bar{H}_{0}^{\prime}: \quad \bar{\beta}_{3}=0\)
\(\mathrm{H}_{1}: \beta_{3} \neq 0\)
\[
t=\frac{\bar{b}_{3}-0}{{ }^{s_{b_{3}}}}=\frac{-19 . \overline{1}-0}{\sqrt{50.4}} \approx-2.7
\]

Since we have only 13 observations--the years 1960-1972we use the confidence interval \((-3 ; 3)\). The \(t\)-statistic is within this range, so we cannot say that \(X_{3}\) is significantly different from zero.
c) \(\mathrm{H}_{0}: \quad \mathrm{R}^{2}=0\)
\(\mathrm{H}_{1}: \quad \mathrm{R}^{2}>0\)
The test statistic \(\frac{\mathrm{R}^{2} /(\mathrm{p}-1)}{\left(1-\mathrm{R}^{2}\right) /(\mathrm{N}-\mathrm{p})} \sim \mathrm{F}_{\mathrm{p}-1, \mathrm{~N}-\mathrm{j}}\)
Again, there are \(N\) observations and \(p\) variables.
\(\mathrm{R}^{2}\) and ( \(1-\mathrm{R}^{2}\) ) are ratios of sums of squares. Each has the same nominator. Hence thér ratio is a ratio of two \(\bar{x}\) random variā̄ies: The ratio óf two \(\chi^{2 \prime} \bar{s}\), divided by their degrees of freedom, is dístributed \(F\).
2. Median family size ~ Gau (4.5, .20)
\(z=\frac{\text { median family size }-4.5}{\sqrt{.20}} \sim\) Gau \((0,1)\)
\[
\begin{aligned}
& \operatorname{Pr}(\text { Median family size }>6) . \\
= & \operatorname{Pr}\left(\frac{\text { Median Eamily Bize }-4.5}{\sqrt{.20}}>\frac{\left.6-\frac{4.5}{\sqrt{20}}\right)}{} \quad\right.
\end{aligned}
\]
\(=\operatorname{Pr}(\mathrm{Z}>3.33)\)
\(<.001\)
(from the normal probability table)

Our supervisor, wi,n claims that \(P\) (Median family size \(>6\) )
- .05; 18 w̄rong.

Aiternatively, if wē note that 6 is more than 3 standard deviations from the mean (medtan mean in a well-behaved batch), we know that our supervisor has overestimated the frequency of median family sizes greater than 6.
3. a) With a large number of observations, a \(\mathbf{9 5 \%}\) confidence interval is described by
\[
\overline{\mathrm{p}} \pm \mathrm{z} .025\left(\frac{-\mathrm{B}}{\sqrt{\bar{n}}}\right)
\]
\[
.85 \pm 1.96(.05)
\]
\[
(.752, .948) \text { is the } 95 \% \text { confidence interval. }
\]
b) \(\bar{H}_{0}: \quad \bar{P}=.95\)
\(\mathrm{H}_{1}: \quad \mathbf{P} \neq .95\)
Since the confidence interval that we cor Octed in part (a) \(\overline{1} \bar{s}\) our acceptance region when \(\bar{\alpha}=.05\), we reject \(H_{0}\). We disagree with the computer center.
c) We have relied on the assumption that our data are approximately normal. However, the distribution is very skewed with a \(p\) of .85 or 95 . ( \(\overline{\mathrm{p}}\) is bounded by 1.). In light of the skewness, 30 is not \(\bar{a}\) large énough sample size to justify our assumption.

\subsection*{9.11}

Unít 7
Reāding Āssignments

\section*{Lectürē \\ \(7=0\) \\ \(7=1\) \\ \(7=2\)}

\section*{Reāing}

Warwick and Lininger, chapters 1, 2, 3 Davis; "Are Surveys Any Good..."

Warwíck and Lininger, chapters 6; 7, 8; Sudman, "Sample Surveys".

Wārwīce and Lininger, chapters 4,5 ;

\section*{Optional:}
```

Coleman, étalal: "Relation of School Factors...";
Duncan, "Measuring Social Change...";
Featherman and Hausēr, "Design for a Replicaté Study...";
Stokes, "Some Djnamic Elements..."
WIns̄borough, "Age, Period and Cohort..."

```

\section*{References:}

Warwick, D. P. and C. A. Liningēr, The Sāmple Survéy: Theory and Practice, McGraw-Hill, 1975.

Daviss, J. A., "Are Surveys Any Good, and if so, for What?" in Perspectives on Attitudes Assēssment: Surveys and Their Alternatives: Proceedings of ā Conference, Smithsonian Institution Technical Report 非, August 1075, National


Sudman, S. "Sample Surveys" in Annual Review of Sociology, Volume 2, Edited by_A. Inkēes, J. Coleman; and N. Smelser. Palo Alto: Annuàl Reviews Inc., 1976: pp. 107-120.
```

Optional Readings:

```

The following three articles appear in Social Indicator Models, edited by K. C. Land and S. Spilerman, Russell Sage Foundation, New York, 1975.

Duncan, \(\overline{0}\). D., "Measuring Social Change vía repićcation of Surveys", Pp. 105-128.

Featherman, \(D\) : \(L\) and R. M. Hauser, "Design of a Feplicate Study of Social Mobility in the United States", pp. 219-252.

942

Winshorough, H: H:- "Age, Pericd, Cohort, and Education Effects on Earnings by Race-An Experiment with a Sequence of CrossSectional Surveys;" pp. 201=218.

The following two articles appear in The elantitative Analysis of Social Problems, edited by Edward R. Tui Ee, Addison-Wesley Publishing Company, Reading, Māssachusetts; 1970.

Coleman; James S., Ernest Q. Campbell, Carol J. Hobson, James - McPartland, Alexander M. Mood, Frederic D. Weinfeld, and Robert L. York; "Relation of School Factors to Achievement" and Integration and Achievement", from Equality of Educational Opportunity:
Stokes, Donald E. "Some Dynamic Elements of Contests for the Presidency".
\[
0.19
\]

Lecture 7-0. Introduction to Unit 7

In乞roduction so Unit 7--Sample Surveys

\section*{Lecture Content:}
1. Definition of a Sample Sur
2. Examples of Sample Surveys

\section*{Main Topics:}
1. What is a Survey
2. Components of a Survey
3. Motivation for Conducting a Sample Survey
(There are no transparencies for this lecture.)
Reference: Warwick and Lininger, Chapters 1-3

919

QMPM

Topic 1. What is a Survey?
1. A Data collection procedure (to e distinguished from a data enaiysis procedure).
II. A detailed fuvastigation, mapping; or inspection to enumarate ō ō̄̄ērve characteristics of a population.
III. Examples
1. Survey of wildife in a region
2. Survey of objects on a desk
3. Survey of rocks in a soil sample
4. Survey of opinions held by residents of a city
IV. Major forms
1. Census-complete survey: every object in the relevant: populātion iss involved.
2. Samp? e survey-partial survey: members of the population are selected and the entire population's characteristics are inferred from the sample.
\[
9.1:
\]

Topic 2. Componer is of a Survey
i. Instrument
1. Obsēruation rule
2. Interview topics
3. Questionnaire
4. Continuous record
in. Fieiding procedure
1. Interview structure
a. Open-ended
b. Structured
c. Item response
2. Data collector
a. Interviewer
i. Face-to-Face
ii. Telephone
b. Self-administered
1. Questionnaire
ii. Diary
c. Unobtrusive observer
i. Participant
ii. Mechanical recorder
III. Data iecording and reduction
1. Items on schedule
2. Coders
3. Direct to computer
4. Machine readable forms
\[
\begin{array}{r}
916 \\
\text { XVI.モII. } 145
\end{array}
\]

\section*{QMPM}
IV. Analysis plan
V. Sampling procedure (for sample surveys)

1: Ad hoc
2. Arbitrary
3. Probability
4. Oversamping
VI. Overall design

1: Cross-section
2. Panel; successive samples
3. Snowball
4. Muitiple questionnaires (for different cat̃ories of respondents)
5. Muitiple linked item \(\varepsilon\)
6. Timing
vir. Sta:s requirements
i. Administrative
2. elerical
3. Fi.eld
4. Scientifさニ
a. Questionnārē design
b. Sampling procedure

Vīil. Sequence of āctivities
Issue defined \(\rightarrow\) population defined \(\rightarrow\) instrument designed \(\rightarrow\) instrument tēsted \(\rightarrow\) sample designed \(\rightarrow\) sample selected \(\rightarrow\) instrument fielded \(\rightarrow\) data returned \(\rightarrow\) data coded \(\rightarrow\) data cleaned and reducec \(\rightarrow\) analysis commences
(Potential biases and ērrors ōčur at each stage.)

Topic 3. Motivation for conducting a sample survey
I. Nature of data-must interact with people
1. Opinions; attitudes; experiences
2. Pàst unrecorded actions
3. Enumeration
4. Behāvioral intentions
5. Législàtive requirements (U.S. census)
II. Why sample?
1. Cos̄t
2. Efficiency=not all observations needed
3. Necessity-not all population members available
III. What purposès cān à survèy servē?
1. Déscribe a population
2. Tēst hypotheses and theories about behavior
3. Deduce goals, interests or desires
4. Evaluate programs
\(\because\). ecast outcomes
rV. Problems with surveys
1. Cost
2. Interaction required-obtrusive
3. Time consuming--for respondent and collection
4. Error prone

\section*{GMPM}

\section*{Lecture 7-i. Survey Design}

Survey Design: Designing instruments and fielding procedures for administēring sample surveys

\section*{Lecture Content:}
1. Concerns of the survey designer
2. Examples of surveys

\section*{Main Topics:}
1. Respnndents
2. Questionnaire
3. interview
4. Examp?es
(There are no transparencies for this lecture.)
Referancé: Warwick and Lininger, Chaptērs 6-8

919

Topic 1. Rempondents
I. Who is to te suy ed -who is the survey about?
1. A. :- धink
2. Heais an : iot. is
3. Income earner:
4. Parents
5. Participants in a particular program
6. ètc.
II. Where are the respondents located?
1. Geoğrāphically
2. Socioeeconomicaliy
3. Behaviorally
III. Where will they be interviewed?
1. Rēsidence
2. At program site
3. On the strset
4. \(\overline{\text { In }}\) store
IV. What impact does nature of respondents have on survey?
1. Language
2. Types of questions that can be asked
3. Timing
4. Access
5. Sēcurity
6. Response rate--cooperativeness
\[
950
\]

QMPM

Topic 2. Questionnaire
i. What controis are required?
¥: Age
2. Sex
3. Race
4. Ethñácíty
5. Famíly type and size
6. Marítā status
7. income
8. Occupation
9. Education
10. Others...
II. What indicators can be used?
1. Duncan scale of occupational prestigè
2. U.S. Bureau of Lābor Statistics or Census Bureau définitions
3. Review other used measures (may be able to contrast results)
III. Interview situation
1. Problems
a. Phon:ē \(\cdots\) aseective, short, unknown réspondent
b. Self administerer:whc really did it?
c. Face-to-face--interviewer training
2. Advantages
a. Mail--cheap
b. Phone--cheap, fast
\[
951
\]
IV. Open versus closed responsè
1. Closed-prompts meaning, limited, category coverage
2. Open=-difficult to quantify irrelevant responsess--lack of verbal abbility but gets spontaneous and unexpected information
3. Comination of open and closed
V. Question writing-objectives
1. Simplicity-~For interviewer and interviewee includes structure, vocābulary; ind responses
2. Spec.: : f--singlē issue focus
3. Avoi، \(\because \because\) crātions̄-=biasēs and prompts
4. Permit catch-ā1 cātēgory
5. Construct appropriate context
6. Depersonalize answers
7. Make relevant to respondent
8. Voice in respondent's style
9. Balance questions positively and negatively
10. Avoid overly consistent response categories and sequence
11. Avoid extreme statements
12. Build in consistency checks
13. Construct effective flow and branching
14. Construct simple layout
15. Keep size to minimum
16. Provide handouts for complicated answers
\[
952
\]

QMPM

\section*{Topic 3. Intérviēw}
I. Use trained interviewers .nce: Warwick and Lininger, Chapter 8)
II. Presentation of interviewer shouid be natural and unobtrusive
III. Perform random chécks ōn interviews (by calysre etc,

\section*{IV. Examplēs}
1. Choose two surveys one of jooi quality (such as a magazine self-report questionairc) and one of professional quality (such as one administered by the National Opinion Research Center or the iastrument appearing on pages 172181 of Warwick and Lininger.)
2. Make certain that students have copies of these survey instruments
3. Havi vudents administer the instruments (or parts) to one another
4. Discuss positive and negative features of the questionnaires
\[
953
\]

\section*{Lecture 7-2.. Sample Design}

Sample Design for Surveys--The use of statistical procedures for sélecting respondents and estimating errors.

\section*{Lecture Content:}
1. Types of sampling procedures
2. Statistics for simple random sampling

\section*{Main Topics:}
1. Review motivation for sampling
2. Sampling procedures
3. Probability sampling
(There are no transparencies in this lecture.)

Reference: Warwick and Linirger, Chapters 4-5

Tcpic 1. Reriew motivation for sampling
I. Why sample?
i. in all population members be interrogated?
2. Need ali population members be interrogated?
3. Cost of complete census may be too high
4. Adequate level of precision may be reached with sample
5. Sāmple may bé better than census-ask more questions of fēer people
II. What is role ō sampling procedure?
1. Select ir:quqduals to interrogate
2. Providc anism for istimating ēr̄or
\[
955
\]

Topic 2. Samping procedures
I. Probability-individuals selected by chance mechaniom with certain known probabilities of inclusion
1. Simple random samping--equally likely and independent inclusion prubabilities
2. Many variations (ion-equal probability)
a. Śstratifity
b. Clusterea
c. Multistage
II. Non-probability
1. Haphazard
2. Judgmental-interviewer determined
3. Quota-categories outside
4. Experts--(paid by interviewer)
5. Purposive
(Note: Non-probability methods do not permit estimating errors in inferring features of the population from characteristics of the sample-thus it cannot be known what size sample is required to obtain some specified level of precision.)

Topic 3. Probability Sampling

\section*{I. Structure}
1. List: Inventory of population units
2. Samping units: Actual sampling basis
3. Frame: Operational procedure to account for population
í. Types of errors
1. instrument measurement error
2. Interviewer biās
3. Sampling error=this we can quantify in terms of a con= fidence interval around a mean response:
a. Once we samplé, response is à random variable
b. When variance and distribution ōf random variāble àre know, confidence interval for the mean can be obtained
c. Stating a confidence levei, we can obtain an estimate of the needed sample size

III: Simplé random samples--equaliy ifkely and independent
1. Al̄ units chosen individualiy
2. Al̄ units have same chance ōf being chosen
3. Sēēection of one unit does not prejudice selection of any other
4. Various mechanisms from inst
a. Random numbēr tāié
b. Computer pseudo-random numbers
c. Mechanícal devices
\[
957
\]
IV. Introduction to statistics for simple random samping (SRS)

Note: For a more extensive treatment of samping the instructor should consult Kish; L., The Sample Survey; New York: Wíley, 1965.
(Notation: upper case letters refer to population 1ower case letters rēfēr to sample)

When a survey is to sample attributes (numerical) in a population we are interested in several issues (use binomial if attribute is dichotomous or Normal approximation to the binomíai):
1. We wili examine average opinion in the sample; \(\overline{\bar{x}}\) :
2. From the sample average we will infer the population average; \(\bar{X}\).
3. Given a level of precision for this inference; we will spēcify the sample size, n.
4. Tō select résponsēs randomly we wili need an inventory or list of the population; \(N\) :

Since we are sampling the population; the sample mean obtained from one sample is only one of many possible means of similar samples, i.e., it is a random variable with expected value \(E(\bar{x})=\bar{X}\) and, in SRS, is distributed \(N\left(\bar{X} ; \bar{\sigma}^{2} / \bar{n}\right)\). That is, it is Normally distributed and an unbiased estimate of the population mean.

Note that \(\bar{x}\) is Normaliy distributed even if the distribution of the attribute bejng sampled is not Normal in the population (except in cases where \(n<30\) ):
V. Confidence intervals for the popuiation mean
1. Variance of population and sample.
\[
\begin{array}{ll}
\sigma^{2} \equiv \frac{\Sigma\left(\bar{x}_{i}-\overline{\mathrm{X}}\right)^{2}}{\mathrm{~N}} & \text { population variance } \\
\overline{\mathrm{s}}^{2}=\frac{\Sigma\left(\bar{x}_{i}-\overline{\mathrm{x}}\right)^{2}}{\mathrm{n}} & \text { sample variance }
\end{array}
\]

Using sample variance as estimate of population variance we use \(\frac{N-n}{N} s^{2}\) and note that as \(N\) becomes large this corréction \(N\) become very small.
2. Variance of sample means frow similarly sized and drawn samples (referred to as the square of the standard deviation of the sample means or the standard error).
3. Confidence intervals


Estímate using sāmple variance:
\[
s_{x}=\sqrt{\frac{N-n}{N} \frac{s^{2}}{n}}
\]
\(95 \%\) confidence interval for \(\overline{\mathrm{X}}\) is \(\bar{z}\)
\[
\bar{x} \pm 2.0 s_{\bar{x}}
\]

99\% confidence intervā for \(\overline{\mathrm{X}}\) is :
\[
x \mp 2.6 s=\quad \text { etc. }
\]
4. Examplé

Perform an experment with the class by asking all to record their age to the tenth of a year. Sample the group randomly and draw a sample of ten. Compute statistics for constructing a confidence interval for average class membē's age from actual average age.

\section*{VI. Sämple size}

Examine the equation for the estimate of the standard error,
\[
s_{\bar{x}} \equiv \sqrt{\frac{N-n}{N} \frac{s^{2}}{n}}=\sqrt{\frac{N-n}{N}} \sqrt{\frac{1}{n}(s)}
\]
and discuss the relative impact on error reduction that occurs by increasing proportionate sample size, \(\frac{N-n}{n}\), and absolute sample size; \(\frac{1}{n}\).
Note the relative efficiency of increasing absolute size.
Since absolute size increases reduce \(\bar{s}_{\mathbf{x}}\) by \(1 / \sqrt{n}\) note that there aré decreasing percentāge improvements as the ratio of sample size to popuiation increases. The typical national sample survey uses n between 1500 and 2500. 959

\section*{VII. Modifications of SRS}

In advanced classes discuss
1. Stratification--divide population into strata
2. Clustering-elements chosen as groups
3. Systematic selection--use selection interval
4. Unequal probability--weight selection probabilities
5. Multistage sampling-selection involving two or more successive stages

Reference: Warwick and Lininger; pp. 95-110 and Chapter 5.

\section*{Homework}

\section*{Unit 7}
1. Write a short essay discussing the merits and disadvantages of using ample surveys to coliect data for policy ana?ysis.
2. Discuss the merits and disadvantages of using archivai survey data for policy analysis.
3. Design an interview schedule to be administered in 30 minutes to obtain information relevant to one of the following urban poifcy issues:
1. Pubíćc transportation
2. Hospitá care of the elderly
3. Prenatā care of welfare mothers
4. Sátisfaction with garbage and santtation services
5. Aír pollution

Be cértain to include relevant control varłables and discuss your planned analysis in termis of policy amenable independent variables.
4. Using the questionnaire designed in the prior reading assignment désign a sampling procedure in which a \(1 \%\) SRS sample would be drawn from an urban population: Discuss the stages through which the sample is actualiy drawn. Choose five questions and estimate their standard errors as: . 01 ; . \(05, .1 ; .2 ; .7\). Compute confidence intervals for population attributes sampled by each question using sampling fractions of \(90 \%, 75 \%, 50 \%, 10 \%, 1 \%, 01 \%\). Assume the city has a popuiation of 500,000 . Assuming a cost of \(\$ 50 /\) completed interview, discuss the comparative merits of each sampling design.
\[
991
\]

Quiz
Unit 7

Name: \(\qquad\)

Pleāse reād this quiz thoroughly before writing answers to any of the questions. Make your answers brief and to the point Excesstve wordiness and rambling responses will detract from your total score. You have thitty (30) minutes to answer this quiz.

Examine the following questionnaire that appeared in the national magazine Ms and was meant to be filled in and returned by Ms. readers. (Do not answer these questions. Quiz questions begin on the third page.)

\section*{First National Television Test on Sexual Attitudes (from Ms. Magazine)}

\section*{Fact Questions}
i. Men are more aggressive than women.

True \(\square\) Fā̄̄e \(\square\)

True \(\square\)
Fā̄e

3. Most women are supported by men and therefore work for luxuries not necessities.

True \(\square\) False
4. The average fuil-time male worker earns:

than his female counterpart.
5. Of all giris born in \(197 \overline{7}\), what percentage will work outside the home during their lifetimes?
\(\square 33 \%\)
\(\square 5 \overline{5} \%\)
1] 90\%

\section*{Opinion Questions}
1. If you could send oniy one child to coliege, would you send:
your son your daughter \(\square\) your oldest child \(\square\)
962
2. The wore assertive and independent a woman is the less sexually attractive she is to men.
agree \(\square\) disagree \(\square\)
3. A woman who decides not to have children is:
\(\square\) Missing one of life's greatest satisfactions
\(\square\) Unfeminine
\(\square\) Fulfillé in other equā̄y valuabiè ways
\(\square\) Probabiy physically unable to have them
4. What gives you the most satisfaction?
\(\square\) Family \(\square\) Runing a home
\(\square\) Love iffe
\(\square\) Careèr
5. Who gets the better deal in this society? Men \(\square\) Women \(\square\)
_-_ END OF QUESTIONS THAT APPEARED IN MS. MAGAZINE =-

983

\section*{GMPM quiz-questions:}
1. Comment on the spilt of these io questions by Ms. magazine into fact and oplnion. Are any of the questions "doūblēbarieled" or applicable to onjy a fraction of the respondents? Are the questions "loaded"? Are the answers ailowed for each question suf= ficient and accurate? What other comments can you make about the nature of the guestions?
2. Given a large response rate; what conclusions can be drawn by an investigator from Individual responses to these 10 questions? What can one say about national "sexual attitudes" from this survey. What qualifications must be made when generalizing from this survey and why?
3. Assume you have \(\$ 150,000\) to dpend on a national survey of sexual attitudes and that the questionnaire has been designed and field tested. Describe a workable, reliable and efficient sampling and implementation strategy. Be sure to discuss whether clustered or stratified sampling should be employed and the nature of the field work.
```

Quiz Solutions
Unit 7

```
1. There were many aspects of the survey wich could be criticized, including the following:
(a) The distinction between fact and opinion is arbitrary.
(b) There was no response aiternative for "don't know" or "no opinion."
(c) Many of the words are loaded, such as "aggressive" and "assertive".
(d) Many of the words are subject to interpretation, such as "paychologically better off."
(e) "Most women are supported by men and therefore work for luxaries not necessities" is a double-barrés question. (It āaks two dífferent questions.)
(f) There is no indication on the questionnaire of the respondent's age or sex or marital status; yet these wtll probably greatly influence the responses.
(g) In many cases; the anawers are not exhaustive. For instance, there are many possible reāons for a women to decide not to have children other than the alternatives listed.
2. Even if there is a large response rate, the respondents wili bē that group of Ms. readers who would answer the questionnaire. The characteristics of that group are certainly different from those of the national population. The survey asks for no demographic or biographical data; but such factors as age and sex and location affect "exual attitudes." Further, we have just finished discussing £laws in the survey itself. Therefore; even with a large respense rate, we do not want to say anything about national sexual attitudes on the basis of this survey.
\[
9 E_{5}
\]
3. There are many correct answers to this question; errors are apt to be of omission, not commision. In designing your survey strategy, did you consider...
(a) who the population is that you wish to generalize about? (the whole country? adults only? sexually active adults only?)
(b) how large a sample to have; in either absolute numbers or percentages?
(c) what sampling strategy to use (ciuster? stratified? simple random sample?) and the relative advantages of the strategy you chose? Remember the Łarge scale of a national survey.
(d) how to administer the survey (in person? by phone? by mail?) and the relative advantages of your choice?
(e) the potential en̄arrassment to respondents, particularly in a face-tomace interview given by someone of the opposite sex?
(f) the cost of your strategy?

QUANTITATIVE METHODS FOR PUBLIC MANAGEMENT
MODULE IV, REVISED

Developed by
SCHOOL OF URBAN AND PUBLIC AFFAIRS CARNEGIE-MELLON UNIVERSITY

SAMUEL LEINHARDT, PRINCIPAL INVESTIGATOR and STANLEY S. WASSERMAN

Under Contract to
THE URBAN MANAGEMENT CURRICULUM DEVELOPMENT PROGRAM THE NATIONAL TRAINING AND DEVELOPMENT SERIVCE

5028 WIsconsin Avenue; N.W.
Washington; D.C. 20016

Funded by
The Office of the Assistant Secretary
for Policy Development and Research
U.S. Department of Housing and Urban Development

\section*{Acknowledgements}

Assistance in the preparation of this package was provided by Blaine Aikin, Larry Albert, Joseph Chmili, Steve Clark, Marjorie Farinelif; Janice Greene; Gretchen Hemingsen, Paul W. Holland; J. Michael Hopkins; Gaea Leinhardt, Richard Sandusky, Christine Vismínas; Dlane Warriner, and Tamar Zeheb.

TABLE OF CONTENTS

Material intended solely for the instructor is denoted by a (I): Material that should also be distributed to the students is denoted by a (S).

Introduction to Module IV (I)
Prerequisite Inventory, Units 8 and 9 (S)
Homework; Prérequisite Inventciry, Units 8 and 9 (S)
Homework Solutions, Prerequisite Inventory; Units 8 and 9 (I)

Reāing Assignments, Unit 8 (S)
Lécture 8-0 Outline (I)
Lecture \(\mathbf{8}=\overline{1}\) Outline (I)
Lécturee 8-1 Transparency Presentation Guide (I)
Lecture 8=1 Transparencies
Lecture \(\overline{8}=\overline{2}\) Ōutine (I)
Lécture 8=2 Transparency Presentation Guide (I)
Lécture 8-2 Transparencies (s)
Lecture \(8=3\) Outline (I)
Lécture 8-3 Transparency Presentation Guide (I)
Lecture 8-3 Transparencies (S)
Homework; Unit 8 (S)
Homework Solutions; Unit 8 (I)
Quiz' Unit \(\overline{8}\) (I)
Quíz Solutions; ưnít \(\overline{8}\) (S)
Reading Assignments; Unit 9 (S)
Lecture 9-0 Outine (i)
Lécture 9-0 Transparency Presentation Guide (I)

Page
XVI.IV.I
XVI.IV. 3
XVI.IV. 10
XVI.IV.ì

XVI:IV. 12
XVI.IV.in
XVI.IV. 15
XVI.IV. 19
XVI.IV. 20
\(\bar{X} \bar{X} \bar{I}-I V .27\)
XVI: IV \(\mathbf{X O}\)菐
\(\bar{X} \bar{X} \bar{I} . I \bar{V} .31\)
XUI.İV. 39
XVI.IV. 44
XVI.IV. 45
XVI.IV. 50
XVI.IV. 54
XVI.IV. 82
XVI.IV. 90
XVI.IV. 92

XVI_IV:93

XVI:IV. 98

Lecture 9-0 transparencies ( \(S\) )
XVI..IV:99

Lecture 9-1 Outinne (I)
XVI. 1 V .103

Lecture 9-1 Transparency Presentation Guide (I)
XVI. IV .107

Lecture 9-1 Transparenctes (S).
xvi.iv.iō

Lecture 9-2 Outinne (I)
XVI.IV.ili

Lecture 9-3 oútiṇ̣e (I)
Lecture 9-4 Outline (I)
Lecture 9-4 Transparency Presentation Guide (I)
Lecture 9-4 transparenctes (S)
Homework, Unit 9 (S)
Homework Solutions, Unit 9 (I)
xví. 主. 139
Quíz, Unit 9 (I)
Quiz Solutions; Unit 9 (I)
Final Examination, Second Term (I)
Final Examination Solutions, Second Term (I)
XVI.IV:i16
XVI.IV. 120
XVI.ivi-i26
XVI. \(1 \mathrm{~V}-127\)
XVI. IV. 136
XVI. IV:148

X̄Ví.IV. 153
XVİ.IV̄. 157
XVI.IV. 170

\section*{Introduction to Module IV}

\section*{Overview}

Module IV of the Quantitative Methods for Public Management package contains two units, numbers \(\overline{8}\) and 9. Unit \(\overline{8}\), Two-way classifications for continuous data, introduces the student to the construction of models for sumarizing continuous data arrayed in a two-way tabie, a table-type data structure quíte comon in public policy studiés. Three variables are involved; two factors and a response. The general strategy is to fit a simple additive model to the table, compute fitted values and residuals and examine the quality of the model: The fitting procedure employed involves iterated decomposition of the tāie using repeated removal of medians (íe., median polish) or means (i.e., mean polish): A procedure is introduced for determining whether the data need to be transformed to improve the approprateness of an additive model. Techniques are also discussed for handing ordinal levels in the factors and for constructing a modei with an Interaction term:

Unit 9, Discrete Multivariate Anaylsis, introduces the student to the analysis of contingency tables, another table-type data structure comon in policy studiés. The data in this case are díscrete frequencies, counts of the simultaneous occurrence of two or more conditions. The question posed by añaysis is whether or not the table provides evidence of independence in the variablēs. The strategy is to introduce students to contingency tables via traditional test for goodness of fit in one dimensionai tables and then to develop log-1inear models in the analysis of higher dimensional tables.
\[
971
\]

\section*{Specific Objectives}

\section*{Unit \(\overline{8}\)}

Upon successfui completion of Unit 8 a student will be able to recognize continuous data that can be arrayed in a two-way layout and will be able to analyze the data. Analysis could include the construction of elementary additive models using median or mean poifsh; computation of comparison values and construction of diagnostic plots; identification of data requiring transformations; seiection of appropriate transformations; construction of displays of coded residuais, evaluation of the fit of the model, piots of effects for ordinai factors; deveiopment ṓ extended sumariés for ōrdinail factors; and development óf extendē modeis incorporating an interaction term.

\section*{Unit 9}

Upon successful completion of Unit 9 a student will be able to identify data wifch can be analyzed as à one, two; or more dimensional contingency table. Ānáysis wíil inciude determination of appropriate probabilíty modès̄, construction of cross-product ratios; computation of Pearson's \(\mathbf{x}^{\mathbf{2}}\) test for goodness of fit in the case of a one dímensional table, construction of log-1inear models in higher dímensionaí tabies, tests for independence of variable and for interactions. Students will have obtained experience in constructing iog-inear models for frequency data arising in commonly reported tāblés such as opinion surveys and censuses.

\section*{Prerequisite Inventory}

Units 8 and 9

In this module we analyze data which come in two forms. The data in Unit 8 are two-wāy tāblēs, which rēlate one \(Y\) and two \(X\) variables. In Unit 9 we look àt contingency tablēs, which list the number of observations in the different categories of one or more variables.

Comprehension of Module \(I\) is assumed. Stem-and=leaf displays and medians are topics covered in Module I that are also used in this module. The topics in this inventory are:
1. Reyiew of Numbers: Amoun+s and Counts
2. Review of Resistant Lines
3. Review of Hypothesis Testing and \(\chi^{2}\)
4. DatāStructures

If you are uncertain about any of these topics after reading this inventory; please consult a member of the teaching staff. Mastery of this material is essential before proceeding to Module IV. Section 1. Review of Types of Numbers

In Unit 1 four types of numbers were discussed: amounts; counts; bounded numbers, and differences. In this module it will be necessary to distinguish countes from amounts̄. Two=way tāblē contain amountes. Contingency tables contān counts.

Amounts are level̄ of à vāiāble. Amounts māy ēthér bē eithèr dis= crete or continuous, but for our purposes we usually think of them as continuous. When we discuss thousands of dollars of income; income can take on so many values that the variāie ís essentiaily continuous even though the smallest unit it can be expressed in is . 01 doliars.

QMPM

As another example; distance is a continuous variable and 56.34 milē is an amount.

A count is the number of observations in a category!. Counts take on only non-negative integer values. The number of people in the u.S. with income greater than \(\$ 20,000\) is an example of a count.

Comparē these \(2 \times 2\) tables:

Average income (in \$) of Trānsylvania rēsidents, by race and sex
\begin{tabular}{|c|c|c|}
\hline & Male & Female \\
\hline Black & 8;400 & 8;000 \\
\hline White & 9,000 & 8,200 \\
\hline
\end{tabular}

Numbē of Transylvania residents, by race and sex

Male
\begin{tabular}{l|c|c|}
\hline Black & 87,508 & 88,981 \\
\hline \multirow{2}{*}{ White } & 195,067 & 198,216 \\
\hline
\end{tabular}

The table on the left introduces a new variable (average income) but tells nothing about the number of people whose incomes contributed to the averages on each of the four cells. The table on the right tells the number of observations in each of the four categories but introduces no new variable. The table on the léf \(\bar{t} \bar{s}\) called a "Two Way" table of amounts; the one on the right, a "Contingency Table" of counts.

\section*{Section 2. Rēview of Resistant Lines}

A clear understanding of resistant lines is important for two reasons: many of the concepts used in describing two-way tables are analogous to techniques used in fitting resistant innes, and there are relationships in two-way table analysis that are best described by fitting rēsistant lines.

A resistant line is a fit which describes the relationship of paired ( \(X, Y\) ) data. If \(X\) and \(Y\) are innearly related (in raw or trans-
\[
\text { XVI.IV-4 } \quad 9 ?
\]
formed units); à resistant line sumarizē that relationship with a single equation. Uninke least squarés regression lines, resistant lines are not much affected by a couple of points which deviate from the inear trend.

To fit a resistant ine, break the ordered \(X\) 's into thirds, carrying along with each \(\bar{X}\) its paired \(Y\) value. Calculate a conditional typical value of \(\bar{X}\) and of \(Y\) for each of the three minibatches of paired values. The conditional typicals will be the (median \(X\), median \(Y\) ) of each thíry, aithough these pairs may not have been paired among the original N ordered pairs.

Before fitting a in̄e, check to see if the data need to be transformed. To do this, proceed to list the conditional typicais:
\[
\left(\bar{X}_{L}, Y_{L}\right) \quad\left(\bar{X}_{M}, Y_{M}\right) \quad\left(\bar{X}_{H}, \bar{Y}_{H}\right)
\]

Calculate the two slopes:
\[
\begin{aligned}
& \text { Late the two slopes: } \\
& \bar{m}_{1}=\frac{\bar{Y}_{\bar{H}}-\bar{Y}_{M}}{X_{\bar{H}}-\bar{X}_{M}} \quad \text { and } \quad m_{2}=\frac{\bar{Y}_{\bar{M}}-\bar{Y}_{\bar{L}}}{X_{M}-\bar{X}_{\bar{L}}} .
\end{aligned}
\]

If the data are inear, then \(\bar{m}_{1} / m_{2}\) will equal 1 . If the ratio is \(<\overline{1}\), transform \(\bar{X}\) down the ladder of powers; \(\overline{\mathrm{f}}>\mathrm{i}\); transform up the ladder of powers. You need transform only the three summary points to see if the transformation is successfui. After you decide on the appropriate transformation, then transform aili of the data.

Once the data are linear, the next step is to remove the tilt (or slope) from the line. The slope is determined by
\[
=\frac{\bar{Y}_{H}-Y_{L}}{\bar{X}_{H}-\bar{X}_{L}}
\]
where \(X\) may now represent transformed data.
975

\section*{GMPM}

Remove the s̄lope by rewriting each \(Y_{i}\) as \(Y_{i}-\overline{\text { min }} \bar{X}_{i}\). The new conditional typicals are
\[
\left(\bar{X}_{L}, \bar{Y}_{L}-\bar{m} \bar{X}_{L}\right) \quad\left(\bar{X}_{M}, \bar{Y}_{M}=m X_{M}\right) \quad\left(\bar{X}_{H}, \bar{Y}_{H}-m \bar{X}_{H}\right) .
\]

The level (or intercept) of the line is the median of \(\bar{Y}_{L}-\bar{m}_{\mathcal{L}}\), \(\bar{Y}_{M}-m \bar{X}_{m} ; \bar{Y}_{H}-\bar{m} \bar{X}_{H}\) - Subtract the \(\bar{l} \bar{e} v e \bar{f}\) from each \(Y\) value. Now we're left with residual \(E Y=m X=\) level

We may choose to polish the line by treating the residuals (i.e., \(\bar{Y}-\overline{\text { m}} \bar{X}\) - level) as a new batch of \(\overline{\mathrm{Y}} \overline{\mathrm{s}}\), repeating the fitting procedure describē above, and adding the polished fit to the original fit. We calculate \(\overline{\bar{a}}\) new batch of residuā̄ from the polished fit and may polish again if we'd like to. The decision to poísh is usuaily based on the appearance of the residuals (in a stem-and-ieaf or as ploted against X).

Section 3. Review of Hypothesis Testing and \(\bar{x}^{2}\)
Many aspects of probability and inference are utilized in Module IV. In particular, you should feel comfortable with hypothesis testing, levels of confidence ( \(\alpha\) ), and \(\chi^{2}\) distributions.

In hypothesis testing, we establish a nuli hypothesis, calied \(H_{0}\), which we express in quantitative terms. The null hypothesis is generaliy a supposition about a population parameter. We then do what= ever analysis is appropriate to the hypothesis, based on a sample from the population in question and on the assumption that \(\mathrm{H}_{\mathrm{O}}\) is true. If our analysis leads to conclusions that are "unlikely", we reject \(\bar{H}_{0}\), i.e., conclude that it cannot be true. Otherwise, we do not reject \(H_{0}\); i.e., conciude that based on our analysis \(H_{0}\) could be true.

The decision as to whether or not a result is "likely" is not a subjective decision but is based on probability. We cannot be correct all the time; but we can decide how much "being wrong" we are willing to tolerate. The proportion of times we expect to be wrong is \(\alpha\), and 1- \(\alpha\) (times \(1 \overline{10 \%}\) ) is our level of confidence. Comaniy used levels of confidence are \(90 \%, 95 \%\), and \(99 \%\).

We are able to quantify our coñ́quence in this precise manner because of our knowledge about underiying probability distributions. For example, in least squares regression we tested the hypothesis that \(\bar{a}\) true \(\bar{B}\) =coēfficient was zero. We māè use of our knowledge of \(t=\) distributions to détermine whether the sample coefficient was likéy to be non=zèro wen the true \(\beta=0\).

In Unit 9 we will use oux knowledge of the \({ }^{2}\) distribution in hypothesis tests. A \(X^{2}\) random variable is defined as the sum of squared normā random variables. Ít ís characterized by one pārā meter, its degrees of freedom. In theory, degrees of freedom àe determined by the nmber of normal random variables which are squared to form the \(x^{2}\); in practice, we will figure out the degrees of freedom from the number of variabies and number of observations in our data. Just as we uséd t-tablés and z-tables, there aré \(\overline{\mathrm{X}}{ }^{2}\) tablēs which tell the probability with which a \(\bar{x}^{2}\) random variable takes on values within specified regions.

\section*{Section 4. Data_Structures}

Most of the data that we have looked at so far have been either one-dimensional ór two-dimensional. One-dimensional data are typicaily single batches of data; written as a iist of numbers, a vector, or an 977
nxi or lon table. Examples:

Number of
Physicians


Quiz Grades 99 97

86

72

Paired ( \(\mathrm{X}, \mathrm{Y}\) ) data for multiple regression analysis may be thought of as having two dimensions, one dimension for each variable: 'Along one dimension are the variables ( \(\overline{\mathrm{e}} . \overline{\mathrm{g}} .\), income, \(\overline{\mathrm{a}} \overline{\mathrm{e}}\) ) and aiong the other is whatever characterizes the observations (e.g., census tract; cíty). For example, the hospital insurance data:

> oidd
> premium

Children's
Beth Israel
McLean
Mt. Auburn Deaconess

866
833
255
162
435
new premium

646
635
218
148
348
illustrate a set of 5 paired observations arranged in ax 5 table.
Now consider the following tables.

Age


Number of college deans
by age; race, and sex
\[
975
\]
XVI.IV. 8

Each of the eight cell entries represents an observation across the three dimensions of age, race, and sex. if we could present such tables In thxee dimensions, we would have done só; placing one of the tables on top of the other. Since we have to present the data on two-dimensional paper, we placed the tables next tō each.other. The decision cō split into separate tā̄les on the basis ōf sex was arbitrary; we could as easily iave writtēn

or any one of four other combinations.
With an understanding of three-dimensional data, we can easily extend our knowledge to largér dimensions. Suppose we want to add region to the college dean data. Below is one way to represent the four=dimensional data.
\(<40\)
Black
White
Black
White


Female

979
XVI.EV. 9

Homework
Préequisite Inventory, Unjts 8 and 9
1. Identify the dimensfons of the following tables as 1; 2; 3; or more dimensions and state whether the cells of the table contain counts (number of observaijons) or amounts (variablé).
a. médian age of college students, by class and college
\(\bar{b}\). enroliment in each of the elementary schools in the city of Pittaburgh
c. number of blue-collar and white-collar workers in major U.S. cíties
d. number of demolitions in 1976 by builaing type and census tract
é number of patients in Philadelphia hospitals, by husital, iliness, and agè

Answer questions 2-10 as briefly ás possible.
2. When you examine \(\bar{a}\) bāch \(\overline{\text { of }} \overline{\text { residuals, what are you looking for? }}\)
3. How míght you wañ to examine residuals from à fitted liné?
4. What values can a count take on?
5. What type of data do you fit resistant lines to?
6. Identify (median \(X\), median \(Y\) ) in the following ( \(\bar{X}, \bar{Y}\) ) batch:
\((3,13)\)
\((5,11)\) \((6 ; 18)\)
( 6 ; 10)
7. How many steps of polish are necessary when fitting a resistant iñe?
8. When do we conciude that a null hypothesis is true?
9. In hypothesis testing, why are we willing to be wrong some of the times that we reject the null hypothesis?

950

Homework
Prerequisite Inventory; Units 8 and 9
Solutions
1. a) two-dimensional table of amounts
b) one-dimensional table of counts
c) two-dimensional tảble of counts
d) two-dimensional cable of amounts
e) three-dimensional. table of counts
2. Gaussian shape, cēntēed and clustered at zero; yery few outliers
3. Plot the residuales against \(\bar{X}\) or \(\bar{Y}\) or \(\hat{Y}\)
4. \(0,1,2 ; 3, \ldots\)
5. Paired (X,Y) datā which exhibit a linear relationship in either raw or transformed units
6. \((5.5,12)\)
7. It depends on the shape and size of the residuals after the original fit (and each step of polish), ana on whether you are fitting the data by hand or computēr.
8. We never conclude thāt a nūl hypothēsis is true; we conciude that it could be true if for a specified jevel of confidence the truth of the null hypothesis could lead to the observed sample statistic (s).
9. If we weren't willing to be wrong some of the time; we would never reject the null hypothesiss. We can never know a true population paraméter; but we can decide what percentage of the time we are willing to be wrong.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\begin{tabular}{l}
Unit 8 \\
Reading Assignments
\end{tabular}} \\
\hline Lecture & Reading \\
\hline 8-0 & Tukey, Chapter \(\overline{1} \overline{0}\), pages \(331-348\) \\
\hline 8-1 & Tukey, Chapter 10, pages 348-363 \\
\hline 8-2 & Tukey; Chapter 11 \\
\hline 8-3 & Singer, "Exploratory Strategies and Graphical Displays" Journal of Interaisciplinary History, volume 7, pagès 57-70 \\
\hline
\end{tabular}

In adítion; piease read the following article:
Fairley \& Mosteller, pp. 23-. 0

\section*{Texts:}

Fairley; W.B. and F: Mosteller, Statistics and Pubíc Poícy, Reading, Massachusetts; Addison-Wesley; 1977.

Tukē, J.W. Exploratory Data Analysis, Reading, Massachusetts, AdisonWesley; 1977.

Lecture 8-0. Introducation to Unit 8
Introduction to Unit 8 --Two-Way Tables

\section*{Lecture Content:}
1. Dēfinition of Two-Way Tables
2. Examples of Two-Way Tables

\section*{Main Topics:}
1. What is a Two=Way Table
2. Examples of this common data form
3. What does the analysis mean
(There are no transparencies for this lecture.)
Reference: Tukey, Chapter 10

Topic 1. Introduction to Unit 8--Two-Way Tables -
I. What is a two-way table?
1. A rectangular array of responses laid out in rows and columns

2. Data comes as triples
3. Vaŕābles (factors) 1 and/or 2 may bé ordinal
4. Response is numeric
II. Examples--common data form
i. Pít \(\bar{t} \overline{\mathrm{~s}} \mathrm{burg}\) food data
2. Infant mortality be region and year
3. others? Unemployment by year; reg.
III. What does analysis mean?
1. Question: what effect does each factor have on the response.

Data \(=\) row effect + column effect \(\mp\) cotmon
Decomposition Into effects
Use residuals for evaluation
2. Question: possible role for tansformations?

Analytic procedure-Median Polish
98.

\section*{Lécture \(\overline{8}-\overline{1}:\) Anaiyzing Two-Way tables óf Responses}

Analyzing two-way tabies using median polish (Simple pits): The use of median polish to construct simple sumaries of two way tables. (1)

\section*{Lecture Content:}
1. Discuss simple model for two-way table
2. Discuss median polish

\section*{Main Topics:}
1. Two-way tables
2. Simple additive summary
3. Median polish

955

QAPM

Topic 1. Structure of a two-way table
Factor 1

I. Simpl̄ē āditive "módél"
(2)
1. Dātā \(=\) Fit (Responsé) \(\mp\) Residual

Response \(=\) Contribution \(\left(\bar{F}_{1}\right)+\) Contribution \(\left(F_{2}^{-}\right)+\)Conmon
Common = Typical for éntire table
2. Row fit \(=\) conditionai typical on row

Column fit \(=\) conditíonal typical on column
3. Row effect \(=\) row \(\overline{f i t} \bar{t}-\) common

Column effect = column fit - common
4. Thus,

Response = Fit \(=\) row effect + column effect + common
or
\(=\) row fit + column fit - common
\[
98!
\]
II. Elementary Analysis (Because we have only an additive model)

1. Technique (using Means or Medians)

Median Polish: Decomposition of a two-way tāble into row and colum effects by repeated (iterated) removal of medians.
2. Procedure

3. Detailis of Method
a. Get row medians and grand median
b. Subtract from \(\bar{X}_{\overline{i j}}\) and then get column medians
c. Check row medians: all zero?
\(\overline{\mathrm{c}}\). if no-subtract row medians from \(\bar{X}_{\text {ij }}\) and get column medians
e. Check column medians: all zero?
\(\overline{\mathbf{f}}\). if no-repeat
g. Yes-add parts ( \(\bar{e} f \bar{f}\). ) and common to get fits

QMPM
4. Fit: Row \(\mathrm{Ef} \overline{\mathrm{f}} \overline{\mathrm{s}} \overline{+}\) Coil Effs + common
or \(\quad\) Row fit \(\overline{+}\) Coí \(\mathrm{E} f \mathrm{f}\)
or Row exf + Coí fit
Then, Residuai = Data - Fit
5. Construct--stem \& leaf=check for symetry

Construct-Elementary analysis table--check for nonaddítivity by examining for opposite corner sign pattern

Examine effects and fits
(6) (7) (8)

Example 1: High School Grades and GPA
Example 2. Infant Mortality by region

\section*{III. Problems}
1. Code restauals

Symbol Residuals
X
x uh + step
uh
-
Ih
0
1h•+ step
0
2. Repēāted valuēs: take cell medians
3. Holes: Skip--āfer more polish, get fitted valués


Lecture 8-1
Transparency Presentation Guide
\begin{tabular}{|c|c|c|}
\hline Lecture Outline Location & Transparency Number & Transparency Description \\
\hline Beginning & 1 & Lecture \(\overline{8}-1\) Outine \\
\hline \multicolumn{3}{|l|}{\[
\frac{\text { Topic } 1}{\text { Section } I}
\]} \\
\hline 1. & \[
27
\] & Effects and Common in Multiple Batches \\
\hline 1. & \[
3)
\] & Two-way table of Responses \\
\hline \multicolumn{3}{|l|}{Section It} \\
\hline 1. & 4 & \begin{tabular}{l}
Two-way table. \\
Elementary Analysis
\end{tabular} \\
\hline i. & 5 & Median Poilish: Procedure \\
\hline 5. & 6 & Predtcting Freshman College Grades \\
\hline 5. & 7 & Medtan Poilsh: College Grades 1 \\
\hline 5. & 8 & Median Poilsh: College Grades 2 \\
\hline
\end{tabular}

\section*{re Outline Location}

\section*{Beginning}

Topic 1
Section I

\section*{1.}
1.

\section*{Section II}
1.
i.
5.
5.
5.

Lecture 8-1.
Analyzing Two -way Tables of Responses
Objective: Find simple summary of two-way table.
Staple means: additive contributions from both factors.

Summery means: decomposing table into effects and conditional typicals or fits.

Technique : Marion polis̄̆.
the decomposition of a two way table by repeated (iterative) removal of medians.

The Notion of "Effects" and Common" in Multiple Eátetiés


Two. Way Table of Responses (Data) [3]


Two-way Table
Elementary Analysis


Column Eff.
Colum Fit


\(\begin{aligned} & \text { Common } \text { = Typical for entire table } \\ & \text { Fit }\end{aligned}\)
[5]

\section*{Median : Polish: Procedure}


LEet row medians and ground median.
a. Subtract from \(x_{i j}\) ard then get column medians.

1 Check row medians all zees?
4. No-subtract row medians from \(\bar{x}_{i j}\) and get column medians
6. Check column medians, all zero?
c. No - repeat.
9. Yes-add parts and common to get fire.
\[
8-1
\]

993

Predicting Freshman College Grades from High School Grades


From : Predicting Academic Performance in p. 5.

Mōule IV

Median Polish: College Grades (1)
[7]

\[
8-1
\]

995

Median Polish: Colvge Grades (2) C83


Elementory Analysis (Original Scale)



996

\title{
Lecture 8-2. Evミluating Additivity \\ Diagnostic Plots: Evaluating the adequacy of an additive model as a summary for a two-way table.
}

\section*{Lecture Content:}
1. Detecting nonadditivity
2. Computing comparison values
3. Diagnostic plots
4. Transformations

Main Topics:
1. Review additive model
2. Discussion of comparison values and dagnostic plots

\section*{CMPM}

\section*{Topic 1. Review additive modei}
I. Sưmary has:

Data = Row effect + Column effect + common \(\mp\) residual
II. Departures from additivity
1. Ónce elementary analysis is completed, arrange residuals in "effect order"

smailest largest
COLUTN EFFECTS
2. Examine effect ordered residuals for evidence of opposite corners sign patterns.


993

Topic 2. Comparison Values and Diagnostic Plots
I. Comparison Values and Disgnostic Plots:
1. Comparison value \(=\frac{\text { row effect colum effect }}{\text { common }}\) for each
ceil
2. Piót residual \(x\) comparison value

3. Note that:
a. If residuals are ail around zero this plot will be flat
b. íf residuals equà comparison values or equal compar= íson values times some constant, there is some nonadduitive (muitipícative) component in residuās
4. Explore for non-āditivity by putting resistant line through piot
5. Flatten diagnostic plot by re-expressing data \(\mathrm{X}_{\mathrm{ij}}^{1-\mathrm{m}}\).
using ladder of powers
6. Redo entire procedure to determine if re-expression was effective
7. Note:
a. Weak patterns in the diagnostic plot will not reexpress well
b. Non-monotone patterns require more complicated fits
c. 1-m must be interpreted loosely-it is a guide, an approximation
8. Example: HS grades and Freshman GPA

Lecture 8-2
Transparency Presentation Guide
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Lecture \\
Outline \\
Location
\end{tabular} & Transparency Number & Transparency Description \\
\hline Beginning & 1 & Lecture 8-2 Outline \\
\hline Topic 1 & & \\
\hline Section II
\[
1 .
\] & 2 & Residuals in "Effect" Order \\
\hline Topic 2 & & \\
\hline Section I & 3 & Comparison Values and Diagnostic Plot- \\
\hline 8 & 4 & High School Grades and Freshman Grade Point Average \\
\hline 8 & 5 & High School Grade Data: Residuals and Comparison Values \\
\hline 8 & 6 & Diagnostic Plot of Grade Data \\
\hline 8. & 7 & Diagnostic Plot of Log (Grade Data) \\
\hline 8 & 8 & Elementary Analysis ós log (Grade Data) \\
\hline
\end{tabular}

100

Module IV
[1]

Leeture 8-2
Evaluäting additivity in a two-way table using diagnostic plets.

Lécturé Content:
i) Detecting mon edditivity.
a) Computing cómparison valuēz.
a) Constructing diagnestic plots.
4.) Performing trañ formations on two-way tables.
\[
\begin{array}{r}
1001 \\
\text { xvi.tv. } 31
\end{array}
\]

GMPM
[2]

Additive Model:
Data = Row effect - Conn effect + Common \& Residual

\[
1000
\]
\[
8-2
\]

Comparium Valuer:
Comparicon value \(=\frac{\text { Ben effect - Column effoct }}{\text { comaron }}\)
N.E.: There is se copporion mius for every cell in the tik.


Transformation:

\[
\frac{10 u 3}{x v i . v v .33}
\]

ERIC
[4]

Example: HS Grades and Freshman GPA by Sex Original Dater



Notice opperife covers: ign pattern
\[
1064
\]
H. S. Grade Date Rexidacis ad Cmparison Valuas



1005
\[
\text { XVI.IV. } 35
\]

Diagnastic Plot of Grade Data

(8-2)
6

Diagnostic Plot of Leg (Grade Data)

\[
m=.23
\]

\[
\begin{gathered}
1007 \\
\text { xvi.Iv.37 }
\end{gathered}
\]

ERIC

Elementary Analyses of Log (Grade Data)


Notice: the sign pattern hos been reduced but not eliminated.
\[
\begin{aligned}
& 1008 \\
& \text { xvi. vi. } 38
\end{aligned}
\]

Lecturue 8-3. Extending the model
Extending the Model: Sumarizing effects in ordinal data using fittéd lines and developing extended fits for interactions.

\section*{Lecture Content:}
(1)
1. Discuss sumaries for effects
2. Discuss interactions

Main Toplcs:
1. Plotting éffects to construct simple sumarias
2. Extended fits

GMPM

Topic 1. Pioting effects to construct simple summaries
I. simplé additive modè for cātégorical data (Review)

1. Dātā \(=\) Fit + Residual
becomēs:
Response = column effect + row effect + common
2. Transformation of the response variable may be required to improve additivity.

Then model is:
(Response) \({ }^{\bar{r}}=\) column effect + row effect + common and the data structure is concefved of as:

3. When the factors are categories of categorical variables then a sumary formula for the effects is not possible and each effect, one for each category of each factor, must be represented in the model.
\[
010
\]
II. Additive model with ordinal data
1. When factors have quantitative levels, íe ordinai data, then it is possible to consider fitting a model with summaries for effects.
2. Generally, we can try to fit
\[
(\text { Response })^{r}=f(\text { Factor 1) }+f(\text { Factor 2) }+ \text { common }
\]
where the right hand functions are linear or inear through a transformation.
(Note that this is the most general representation. it is not necessary for the response to be transformed or for both factor̄ to be ordinal.)
3. An altēnative reprēsentation:
\[
(\text { Respongé })^{r_{0}}=\left(\bar{a}_{i}+\bar{b}_{i} \bar{F}_{i}^{r_{1}}\right)+\left(a_{2}+b_{2} F_{2}^{r_{2}}\right)+\text { common }
\]
(Note thāt this assumes that the effects for each factor can bè sumarized às a linear function of the factor's levels.)
III. Finding summaries for éfeects of ordinal variables:
1. Plot éfeect against level using x-axis for level. (One plot for each factor.)

Eféfect

Factor
2. If it appears to be reasonable; fit a line to the scatterplot (transform factor levels if this is required:)
3. Ūē the equation obtained as the sumary of effects for the factor.
IV. Examplé: College grade point average as àesponse to sex of stū̄ent and high school average grade
1. Simple additive and logged fits (éfects only are shown)
2. Plot of row effect against row factor (high schooi grade.)

1ine: Row effect: \(=-.56 \mp .23\) (HSG)
Model:
GPA \(=(-.56+.23\) (HSG) \()+(\) Sex Effects) \(\mp\) common
3. Plot or row effect against row factor (logged response).
inne: row éffect \(=-.12 \mp .04\) (HSG)
Model:
\[
\text { log GPS }=(-.12 \mp .04(\text { HSG }))+\text { Sexx Effect }+ \text { common }
\]
v.

Example: Moody bonds-net interest as a response to year and grade.
1. Öriginal data and effect analysis
2. Plot of row effects against row factor level (year).

Line: row effect \(=-.50+.30\) (year - 1964)
3. Plot of column effects against column factor level (bond grade).
Line: column effect \(=-.33+.26\) (grade)
4. Mode1

Net interest \(=(-.50+.30(\) year -1964\())+(-.33+.26(\) grade \())\)
or
Net interest \(=.30\) (year -1964\()+2.6\) (grade) +3.70
\[
\begin{array}{r}
1012 \\
\times 01 . \overline{9} .42
\end{array}
\]

Topic 2. Extended Fits
I. Purpose
1. To include an interaction effect
2. To Improve additivity where transformations do not make sense
II. Modẹ 1

Response = Row Effect + Column Effect + common \(\mp k \frac{\text { (Row effect) (Column effect) }}{\text { common }}\)
where \(k\) is slope of a line through the diagnostic plot
III. Procēdure
1. Perform elementary analysis
2. Construct a diagnostic plot
3. Fit a line and find \(k\)
4. Compute difference between residuals from elementary anāàȳis and \(\bar{k} \frac{\text { ce.re }}{\text { com }}\). These are new residuals
5. Contrast improvement by computing sum of absolute residuals
6. Compute fitted values from basic model
IV. Construct example using college grade point average data.

Lecture
Outline
Location

\section*{Beginning}

Topic 1
Section IV.
1.

2,3

Section V.
1.

2,3

Transparency
Number
1

2

3

4

5

Transparency Description
Lecture 8-3 Outine

Grade point average by high school grade and sex

Row effects plotted for raw and logged data

Average net interest costs for bonds

Row and column effects plotted

1014

Extending the Model
Summarizing effects in ordinal data using fitted lines and developing extended fits for miteractions

Lecture Content:
1. Discuss summaries for effects
2. Discuss interactions

Main Topics:
1. Plotting effects to construct simple summaries
2. Extended Fits
[2]

Example i - GPA = MS grade e ex



ERIC

QMPM

Ave. Net Int. Cost (in \%)

\(\bar{R} \bar{E} \overline{R F}\)

OH \(00.011 .015-.083-.09\)
\(65.045 .04600-0088=.144\)
660.0 .041 .035-.033-.269
\(67-.025 .005600-.048-07\)
\(68-.103-.01\). \(063.040-.031\)
\(69.575-.204\) ào -.018 .055
7is 0.0 \(=.319-.035\).037 .034
\(78 \quad 3.6 \quad-.259=.255 \quad .718 \quad .481\)

33 \%, \(28:-015.018-379\)
CE


Original Data
\(-1.3793 .155\)
\(-1.3743 .160\)
-999 3.535
\(=6743.86\)
\(=.1464 .338\)
.1964730
1.786 .305
.8415 .50
.3864820
.2719 .805
4.533

1019


Pow Effect - - 20 + 20 (var - i964)


Column Effect \(=-.33+.26\) x
MOONY BOND DATA (RAW)
\[
\text { xvi. iv. } 491020
\]

QTPM

Homework; Unít 8
1. Average intèrest rates by loan size and geographical région appear below. (Units are \(\overline{\%}\) per year):
\begin{tabular}{|c|c|c|c|c|c|}
\hline iocation & \$1000 & \[
\begin{array}{r}
\text { size } \\
\$ 700 \mathrm{C}
\end{array}
\] & \[
\$ 10000
\] & \$30000 & \$1000000 \\
\hline New Fork City & 10.0 & 9.0 & 8.5 & 8.3 & 7.8 \\
\hline South and West & 10.8 & 10.4 & 9.8 & 9.1 & 8.6 \\
\hline North and East & 10.9 & 10.3 & 10. 2 & 9.1 & 8.6 \\
\hline
\end{tabular}
(a) Median polish this table; and coment on residuals.
(b) Compare the three iocations by examining the location effects.
(c) How do the interest rates vary with loan size?
(d) Suğest some reasons fr wed eqfects across ioan size and region-assume ioan mo: muoiity sold in a market.
(e) Assume that you are the \(\quad \because\) manaser of a large; non-profit rehabilitation orgà \(\quad\) arinester: New Hampshire. The
 offices and recreatyonai \(x\) ilities. A foan or \(\$ 100,000\) is required to finance constricica. Yous board of directors suggests that many gmail ioans be made in the Manchester area so that local financiai institutions will benefit: Bút you are concerned with the organization's growing indebtedness and suggest a different strategy to minimize cost. What is the strategy? What arguments would you use in support of your position?
2. Pursuing à study of the equity of basing school support on local property assessments you gather data on assessed values for single family dweilings by age of dwelling and metropolitan area. The data appear below.
(a) Analyze tine tab̄le.
(b) What substantive explanations can you provide for any consistencies in éfects across age and region?
(c) If school support is based on assessed property vaiues, what can you say about the distribution of the burden of school support across these metropolitan areas?

\section*{City}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Age of dwelling & Atlañta & L.A. & D.c. & Chicago & New York \\
\hline < 5 years & \(22 \overline{2}\) & 238 & 229 & 224 & 243 \\
\hline 6-10 yeārs & 227 & 239 & 225 & 231 & 240 \\
\hline 11 \(1=30\) yeārs & 222 & 221 & 224 & 212 & 249 \\
\hline 21-30 yeàrs & 195 & 216 & 230 & NA & NA \\
\hline 31-40 years & 199 & 214 & 213 & 198 & 192 \\
\hline > 40 years & 195 & 206 & 205 & 221 & 251 \\
\hline
\end{tabular}
3. Considè the two two-way tabies shown beiow:

The first gives iabor participation rates for women with chíidren in 4 age classifications for 1950-70 in 5 year intervals. The second table gives labor participation rates for married women in 4 age classes for the same years. Entries are \(\%\) of women with the specified row/column characteristics that are employed; e.g., 11.9\% of women with children under 6 were employed in 1955.
(a) Analyze these tables using median polish.
(b) How do children affect the labor participation rates of women? Have these "children effects" been constant over time as evidenced by the columns of the first table? Your supervisor is particularly interested in the "children 6-17" effect. Why is this effect so much higher than the "no children under 18 " effect? Why doesn't the rate increase as children become older?
(c) In general; is the participation rate higher or lower for married women than for women with children? Prove to your supervisor that this question is easily answered by examining only one fitted parameter from each table.
(d) Present to your supervisor the two relationships between the 6 years in the tables and the labor participation rates for women with children and the years and married women. Is there a innear relationship in either table? How do the fitted ines compare?
(e) Check to see if the row and column effects are additive in the raw unit of measurement: Check the residuals for any sign patterns and the comparison values for evidence of need for a transformátion:.
(f) if a transformation of either table is called for, reexpress and analyze the transformed data:
\[
1022
\]

LABOR FORCE PARTICIPATION RATES (In \%) MARRIED WOMEN (HUSBAND PRESENT)
\begin{tabular}{llllll} 
& \multicolumn{5}{c}{ YEARS } \\
AGE & 1950 & 1955 & 1960 & 1965 & 1970 \\
\hline \(20-24\) & 28.5 & 29.4 & 30.0 & 35.6 & 47.4 \\
\(25-34\) & 23.8 & 26.0 & 27.7 & 32.1 & 39.3 \\
\(35-44\) & 28.5 & 33.7 & 36.2 & 40.6 & 47.2 \\
\(45-54\) & 26.8 & 33.9 & 40.5 & 44.0 & 49.5 \\
Source: & Department of Labor, Manpower Report of the President, 1973.
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{LABOR FORCE PARTICIPATION RATES (in \%) WOMEN WITH Children (husband present)} \\
\hline & \multicolumn{5}{|c|}{YEARS} \\
\hline & 1950 & 1955 & 1960 & 1965 & 1976 \\
\hline With Children Under 6 & 11.9 & 16.2 & 18.6 & 23.3 & 30.3 \\
\hline Children 0-17 & 12.6 & 17.3 & 18.9 & \(22 . \overline{8}\) & 30.5 \\
\hline Children 6-17 Only & 28.3 & 34.7 & 39.0 & 42.7 & 49.2 \\
\hline No Children Under 18 & 30.3 & 32.7 & 34.7 & 38.3 & 42.2 \\
\hline
\end{tabular}

1023
XXVI. IV. 52
4. This table shows average infant mortality rates over 1964-1966, whites and blacks, legitimate and illegitimate births, for 4 regions of the United States.
(a) Analyze this table using both median polish and mean polish. How do the two ficted models compare? If there is a difference in fits; explain why.
(b) Estimate the infant mortality rate for black illegitimate births in the western United States.
(c) Suppose you work for an agency in HEW and have a \(\$ 20\) milifion 1977-78 appropriation for educating expectant mothers in prēand postnatal care. How should this money be spent? Discuss how the funds should be allocated to regions of the United States: To whom should the educational campaign be directed; specifically; which age groups, which races, etc. The majority of your inferencees should be based on this tā̄le.

AVERAGE INFANT MORTALITY RATES; \(1964-1966\) (average annual rates per 1000 live births)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{REGION OF U.S.} \\
\hline & NORTHEAST & NORTH CENTRAL & SOUTH & WEST \\
\hline White Legitimate & 19.1 & \(2 \overline{2} \overline{7}\) & 21.7 & 20.0 \\
\hline White iniegitimate & 35.5 & \(3 \overline{3} . \overline{3}\) & 36.5 & 31.4 \\
\hline Biack legitimate & 33.9 & 44.0 & 40.4 & 35.5 \\
\hline Black inlegitimate & 43.6 & 39.9 & 45.1 & NA \\
\hline
\end{tabular}

Source: Socioeconomic Issues of Health, 1974.

\section*{Homework Solutions \\ Unit 8}

Step 1. Find row medians
1a)
\begin{tabular}{ll}
10.0 & 9.0 \\
10.8 & 10.4 \\
10.9 & 10.3
\end{tabular}
8.5
9.8
10.2
\(\overline{8} . \overline{3}\)
9.1
7.8
med 10.9
10.3
9.1
8.6
8.5
10.9

Step 2. Subtract out row medians; find column medians


Step 3. Subtract out colum medtans and new row medians then new column medians
\begin{tabular}{rrrrrrr}
.5 & 0 & 0 & -5 & -5 & -5 & -1.3 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
-.3 & -.4 & 0 & -.4 & -.4 & -.4 & .4
\end{tabular}
\begin{tabular}{lrrrrrr} 
med & 0 & 0 & 0 & \(\overline{0}\) & \(\overline{0}\) & \\
part & 1.0 & .5 & -0 & -.7 & -1.2 & common \\
& & 9.8
\end{tabular}

Step 4. Subtract out new row mēdians: Ali medians now \(=0\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & & & med & part \\
\hline & 0 & -. \(\overline{5}\) & -. 5 & 0 & 0 & 0 & -. 8 \\
\hline & 0 & . 1 & 0 & 0 & 0 & 0 & 0 \\
\hline & 1 & 0 & . 4 & 0 & 0 & 0 & 0 \\
\hline med & 0 & 0 & 0 & 0 & 0 & & \\
\hline part & 1.0 & .5 & 0 & -. 7 & -1.2 & common & 9.8 \\
\hline
\end{tabular}


1a) (contimed)
```

Residuals
Unit $=.1$

```
-1
-1
-0
-0
0
0
0
1

The restuàis tend to be small (0) or large (.4, -.5) as we expect from a resistant procedure. That two of the three large residuais are from NYC suggestes further analysis of this location.
ib) Examining the iocation effects; we fumediately note that there is realiy oniy one effect--NYC. The other two regions have zero location effects. Further, the NYC effect is large (almost a full percent) and negative--i.e., interest rates in NYC tend to be almost \(\bar{z}\) full percent 1 ower than the NE and SW regions (for the conditions under which the data were collected=: time; term; loan size; etc.).
ic)
位 is quite chear that interest rates decrease monotonicas as the toan size increases (for the conditions under which the data were colilected).

1d)
If we consider ioan money as a comodity sold in a market, then much of the \(\overline{s i z e}\) and location effects might be explained by supply and demand. it is ilkely that money is more available (larger suppiy) in NYC than elsewhere due to the high density of financial institutions there. We do not, however, expect demand tó bé correspondingiy higher in NYC since money consumers (individuai or coumercial) are at least as mumerous in each of the other two regions. NYC, a "financial capital", thus exhibits 1ower interest rates.

Similarly, one would expect intērēst rātē to decrease with 1oan size since (à) thèe \(1 \bar{s}\) probably lēs̄ demand for loañ of \(\$ 100,000\) than of \(\$ 1000\), (b) the paperwork for any single loan is probably equivalent, so lender cos̄ts for one \(\$ 100,000\) loan would be significantly lese than for a hundrē \(\$ 1000\) loans, (c) there is \(\overline{\mathrm{p}}\) robably less risk involved with the larger loans (would you loan \(\$ 100,000\) as readily as \(\$ 1000\) ?).

Note that these ideas might also hēlp explain the two large residuals for NYC. Sipence large loans ( \(\$ 30,000\) or \(\$ 100,000\) ) are available only frou the larger banks wilie smail 10ans ( \(\$ 1000\) ) are available from all (but mostly the smaller) banks. The lower interest rates for the \(\$ 7000--\$ 10000\) loans might be causnd by a relatively smaller demand for these loans

\section*{QMPM}
offered by the large NYC banking establishments. (A similar trend would not be expected for the \(\$ 1000\) loans since they may not be quite as readily available from those larger banks, and hence not experience quite the same degree of oversupply.) We assume all other considērations (time, term, etc.) are equal.
1e) Should you follow the advice of your board of directors, you would expect to pay over \(10 \%\) Interest on the loans (since interest rates for the NE for loans of \(\$ 10000\) or less are \(10.2 \%\) or greater): Moreover, should a single \(\$ 100000\) loan be taken, the interest rate would be only \(8.6 \%\); a savings of at least \(1.6 \%\) or \(\$ 1600\).
of course, an even more clever strategy would be to go to NYC and take the loan there. The resultant interest rate would b̄e \(7.8 \%\). This strategy would save át least \(2.4 \%\), or \(\$ 2400\) over that suggested by your board of directors.

A reasonablē compromise would \(\overline{\text { bee }} \overline{\text { teo }}\) suggest that mémbe : your board take a pay cut o compensate the company for the larger cost of implementing their pian.

Note that since the organization is non-profit and pubifc service, a consideration buch as generating good-will (which often induces corporations to pursue more cosstly strategies) is not an is̄sué. However, if by taking the more costly ioans from ōther local banks, other benefits (such as fund raising aid from thése institutions) accrue, a more complex cost-benefit analysis is required.
\begin{tabular}{lllllll} 
& & & & & med. \\
2a) & 222 & \(\mathbf{2 3 8}\) & \(\mathbf{2 2 9}\) & \(\mathbf{2 2 4}\) & \(\mathbf{2 4 3}\) & \(\mathbf{2 2 9}\) \\
Step_i & 227 & 239 & 225 & \(\mathbf{2 3 1}\) & \(\mathbf{2 4 0}\) & \(\mathbf{2 3 1}\) \\
& 222 & 221 & 224 & 212 & 249 & 222 \\
& 195 & 216 & 230 & & \(=\) & \(=\) \\
& 199 & 214 & 213 & 198 & 192 & 199 \\
& 195 & 206 & 205 & 221 & 251 & 206
\end{tabular}
\begin{tabular}{lrrrrll}
\hline & & & & & part \\
Step 2 & -7 & 9 & 0 & -5 & 14 & 229 \\
& -4 & 8 & -6 & 0 & -9 & 231 \\
& 0 & -1 & 2 & \(=10\) & 27 & 222 \\
& -21 & 0 & 14 & \(-=\) & \(-=-\) & 216 \\
& 0 & 15 & 14 & -1 & -7 & 199 \\
& -11 & 0 & -1 & 15 & 45 & 206 \\
med & -6 & 4 & 1 & -1 & 14 & 219 (common)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{7}{*}{Step 3} & & & & & & med & part & \\
\hline & -1 & 5 & - 1 & -4 & 0 & -1 & 10 & \\
\hline & 2 & 4 & -7 & 1 & -5 & +1 & 12 & \\
\hline & +6 & -5 & 1 & -9 & 13 & +1 & 3 & \\
\hline & -15 & -4 & 13 & \(=-\) & --- & -4 & -3 & \\
\hline & +6 & 9 & 13 & 0 & -21 & 6 & -20 & \\
\hline & -5 & -4 & -2 & 16 & 31 & -2 & -13 & \\
\hline part & -6 & 4 & 1 & \(=\overline{1}\) & 14 & & 219 & oumnt: \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{6}{*}{Step 5} & & 4 & 0 & 0 & 0 &  & \[
\begin{gathered}
\text { part } \\
9
\end{gathered}
\] \\
\hline & 1 & 4 & -8 & + & -7 & & 13 \\
\hline & 5 & -8 & 0 & -7 & 11 & 0 & 4 \\
\hline & -11 & -2 & 17 & -- & --- & -2 & -9 \\
\hline & 0 & 1 & 7 & -3 & -28 & 0 & -14 \\
\hline & -3 & -4 & 0 & 21 & 32 & 0 & -15 \\
\hline part & -6 & 6 & 1 & -4 & 15 & & 219 common \\
\hline
\end{tabular}

QMPM
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{7}{*}{Step 6} & \multirow[b]{2}{*}{0} & \multirow[b]{2}{*}{4} & \multirow[b]{2}{*}{\(\underline{0}\)} & \multirow[b]{2}{*}{0} & \multicolumn{3}{|c|}{part} \\
\hline & & & & & 0 & \multicolumn{2}{|l|}{Part 9} \\
\hline & 0 & 0 & -9 & 2 & -7 & 14 & \\
\hline & 5 & -8 & 0 & \(=7\) & 11 & 4 & \\
\hline & -9 & 0 & 19 & -- & --- & -9 & \\
\hline & 0 & 1 & 7 & -3 & -28 & -14 & \\
\hline & -3 & -4 & 0 & 21 & 32 & -15 & \\
\hline \multirow[t]{2}{*}{med} & 0 & 0 & 0 & 0 & 0 & \multirow[b]{2}{*}{219} & \multirow[b]{2}{*}{common} \\
\hline & -6 & 6 & 1 & -4 & 15 & & \\
\hline \multirow{7}{*}{Step 7} & & & & & & med & part \\
\hline & 0 & 4 & \(\underline{0}\) & \(\overline{0}\) & 0 & 0 & 9 \\
\hline & 0 & 0 & -9 & 2 & -7 & 0 & 14 \\
\hline & 5 & -8 & 0 & -7 & 11 & 0 & 4 \\
\hline & -9 & 0 & 19 & - & --- & 0 & -9 \\
\hline & 0 & 1 & 7 & -3 & -28 & 0 & -14 \\
\hline & -3 & -4 & 0 & 21 & 32 & 0 & -15 \\
\hline med & 0 & 0 & 0 & 0 & 0 & 219 & common \\
\hline parit & -6 & 6 & 1 & -4 & 15 & & \\
\hline
\end{tabular}

The resultant table is
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & lanta & LA & DC & Chicage & WY & eff & fit \\
\hline \(<\overline{5}\) yeàrs & 0 & 4 & 0 & 0 & 0 & 9 & 228 \\
\hline 6-10 & 0 & 0 & -9 & 2 & -7 & 14 & 233 \\
\hline 1i-20 & 5 & -8 & 0 & -7 & 11 & 4 & 223 \\
\hline 21-30 & -9 & 0 & 19 & --- & --- & -9 & 210 \\
\hline 31-40 & 0 & 1 & 7 & -3 & -28 & -14 & 205 \\
\hline \(>40\) & -3 & -4 & 0 & 21 & 32 & -15 & 204 \\
\hline eff & -6 & 6 & 1 & -4 & 15 & common & \(=219\) \\
\hline fit & 213 & 225 & 220 & 215 & 234 & & \\
\hline
\end{tabular}

Note the larger NY effect, and the large NY residuals. Note thāt except-for \(<5\) yrs: age effect decreases as age incréasēs.

2b)
One might expect assessments to correspond to à large degree to the cost of ilving of given area. This certainly appears to be the cāes, with the greatest iocation effect for NYC (which has the highest cost of íving of those cities examineds and the smallest locāion effect (greatest negative) for Atlanta. Sim= ilarly for LA, DC, and Chicago-

Similarly, we expect assessment to decrease with dwelling sqe. This certainiy appears to be the cā̄ē except-for dwellings constructed in the past 5 years. Since these are aggregate figures, this phenc enon might be explained by a recent wave of lowcost housing construction in the larger cities.
\[
1029
\]
XVI.IV. 58

2c)
If \(\bar{s} c h o o l\) support \(1 \bar{s}\) bāsed on āsēessed property values, we expect the burden of this support to fall most heavily upon newcomers to the city, i.e., those who move into the newer ( \(\leq 10\) yrs. old) dwellings. This assumes a minimal mobility on the part of longtime residents. In an area of higher internal mobility; the burden of support falls more heavily on those who think they can afford to move into newer ( \(\leq 10 \mathrm{yrs}\). old) dwellings.

The impact of such an assessment structure may be to create a disincentive to the construction of new homes with a corresponding loss of jobs and a disincentive to mobility by young upwardly mobile families. This would yield reduced total tax revenues and make difficult the support of schooling in general. Such effects would be particularly hard felt in NYC which could probably use such potential tax revenues most. Thus; basing school support on property taxing is not likely to yield equitable education, at least on the basis of these data.
3.a) Table its analyzed by median polish in Figures A through D, Table in in figures \(E\) through \(H\). In each case, the analysis proceeded as follows
i) The data were entered
if) The tables were polished (Figures A and E)
ifí) The residuals were analyzed (Figures B and F)
iv) A diagnostic plot was made (Figures c and G)
v) A resistant line was calculated for the diagnostic plot (Figures \(D\) and \(H\) )

By themselves these Figures do not constitute à complete analysis; we must interpret these figures. This is done in parts (b), (c), (d), (e), and (f) below.

We should, however, be very cautious in our interpretation of these data since we do not know how participation rates were calculated; what the base group was (íe.; these are percents of what group?), what the eligibility requirements for this base group were, and whether in fact all of these considerations were even consistent for all of the years in question. Manipulating these factors (or just changing definitions from year to year), can create a table of "participation rates" whitch reflect anything we wish.

For this problem, however, we will assume that the above points have already bēen addressed and answered to our satisfaction.

ठ) Predictably, the prēence of young children (< 6 years old) szems to lower the labor participation rate of women, as evidenced by the large negative effect of the first two rows of table II (compared to the large positive effect for the forirth rowwomen with no children under 18). The presence of children in general also seems to lower the average rate (see (c) below).

More interesting, however; is that the rate for women with OLDER children ( 6 to 17 years of age) is HighER than that for women with no children under 18. We can hypothesize at least several rēasons why this might be so (aithough this is an excellent quēstion for further study):
--familes with older children are more likely to need the additional income;
--women with children over is are likely to be oldēr, and hence possess fewer; obsoiescent; or just "rusty" skills. (but see the effects of age in Table i);
- many women whose chitdren are over \(1 \overline{8}\) (note that this is an open ended age bracket; the children could be 37) may have reached voluntary--ō mandatory--retirement age.

Note aiso that these effects are Not constant over time: in 1950, the rate for women with chilidren between 6 and 17 was lower than that for women with children over 18. Yét thereafter the situation is reversed. This situation might be due to the large utilization of women-especialiy women without children at home-in the work force during Worid War in (whose effects would continue for several years, perhaps even through 1950); and perhaps also Korea (1950-1952).

A similar, although temporary, reversal occurs between the rates for women with children under 6 and with children under 17 in 1965. Reasons for thís situation are more difácult to propose:
c) Conparing the common values for each table as general indications of OVERALL level, we note that the common vaiue for Tabie i (33.7) is greater than that for Table II (27.0), which suggests that the participation rate for married women in general is greater (by about 7\%) than that for women with children. (This should not be too surprising).
d) First note that there are only FIVE years given in each table.

These plots are shown for Table in in figure \(i\) and for Table II in Figure \(K\). The resistant line for each is shown in Figures \(J\) and L respectively.

Both plots are nearly linear, the third and fourth point of each lying somewhat below the fitted line.

Note the similarity in slope between the two fitted lines. (. \(896 \mathrm{vs},-855\) ): The two lines therefore differ only by a constant of about \(8 \%\). (This is calculated by comparing the ordinates at each of several years. We cannot simply compare the constant terms of the two resistant lines since the slopes are not precisely equal).

Note how this corresponds to jur answer in (c) above. The participation rate for married women seems to have been consistently (over time) about \(8 \%\) higher than that for women with children.
e) To check additivity, we examine three indicators:
i) the rēsiduā 1 sign patterns (Figures \(A\) and \(E\) )
ii) the rēsidual bēhavior (Figures \(B\) and \(F\) )
iii) the diagnostic plots (Figures \(C, D\), and \(G\); \(H\) )

A residual sign pattem for Table i (figure A) does not seem particularly prominent. The poor behavior of the residuals (Figure B.) points to a definite lack of additivity. The diagnostic plot (Figure C) whose siope (as calculated in Figure D) is 1.46, confinms this: Reexpression will be pursued in part (f).

Similarly, there is no residuai sign pattern for Table II ( \(F i\) gine E ). The residuals (Figure F), while not especially well behaved, have few outilers. The slope of the resistant line (calculated in Figure M) for the diagnostic plot (Figure G) is extremely close to 0 ; a decisive indication of additivity.
f) We noted in (e) above that the slope of the resistant line for the diagnostic plot for Table I (Figures C; D) was 1.46 , confining the other indications of nonaddutivity: This value (approximately 1.5) suggests reexpression to reciprocal roots. Since reciprocals (let alone reciprocal roots) are difficult to interpret, a log reexpression was tried first.

Figures \(M\) through \(P\) show the analysis of the log data. The behavior of the residuals, and the slope of the resistant ine for the diagnostic plot, both suggest the inadequacy of this transformation.

The (negative) inverse reexpression (still somewhat easier to interpret than inverse roots) was tried next. Figures \(Q\) through T show this analysis. The residuals are much better behaved, although the slope of the resistant line for the diagnostic plot suggests (predictably enough) a further reexpression by square roots.

An analysis of the (negative) inverse roots inght therefore be done next, if the increased additivity is deemed worth the corresponding increase in difficulty of interpretation.
\begin{tabular}{|c|c|c|c|c|c|}
\hline . & \%su.E & data In & \multicolumn{3}{|r|}{FIGURE \({ }^{\text {A }}\)} \\
\hline :. & & 2 & 3 & \(\stackrel{4}{4}\) & \[
5
\] \\
\hline 1: & \%usom & 99.4g日 0 & 30.0000 & 35.6000 & 47.4000 \\
\hline 2: & 2 E 5009 & 26.0000 & 27.7000 & 32.1000 & 39.3000 \\
\hline 38 & \(\xi=5006\) & 33.7000 & 36.2000 & 40.6000 & 47.2000 \\
\hline 48 & \(\therefore\) 9060 & 33.9080 & 48.5090 & 44.0060 & 49.5800 \\
\hline
\end{tabular}

ELEMENTARY ANA: ISIS BY MEDIAN POLISH.
\begin{tabular}{|c|c|c|c|}
\hline & 1 1-2 & 2 & \(3:\) \\
\hline \(1:\) & 2.7125 & 0.0863 & -1.5375 \\
\hline 28 & 1.6000 & 0. 1938 & -0.3000 \\
\hline 38 & \(=1.6000\) & -0.0063 & 0.3000 \\
\hline 48 & -5.6000 & -2.1063 & 2.3000 \\
\hline EFF: & -5.8000 & -2.1933 & 0.0000 \\
\hline FIT: & 27-9437 & 31.5500 & 33.7437 \\
\hline
\end{tabular}
\begin{tabular}{rrr} 
& 4 & 5 \\
18 & -0.3875 & 4.5125 \\
28 & -0.3000 & 0.0000 \\
38 & 0.3000 & 0.0000 \\
48 & 1.4000 & 0.0000 \\
\(E F E 8\) & 4.4000 & 11.3000 \\
FIT: & 38.1437 & 45.0437
\end{tabular}
\begin{tabular}{rr} 
EFFECT & FIT \\
-2.1563. & 31.5875 \\
-5.1437 & 23.0000 \\
2.1563 & 35.9000 \\
4.4563 & 38.2000 \\
33.7437 & 0.0000 \\
0.0000 & -33.7437
\end{tabular}


EIGURE C

FIGURE E



STEM RES2

VARLABLE : RES2 -
UNLT \(=\)
\begin{tabular}{|c|c|c|c|c|}
\hline UNIT & & 6.1000
101 & - -3.7375 & -2.9813 \\
\hline 3 & & -1 1 & 0 & \\
\hline & & -60 1 & & \\
\hline 4 & & 5 I & 6. & \\
\hline 5 & - & F I & 5 & \\
\hline 6 & & \(T\) I & 3 & \\
\hline 8 & & - 01 & 16 & - \\
\hline (6) 63 & & 01 & 000001 & \\
\hline 6 & & T I & 2 & \\
\hline 5 & & F.I & 455 & \\
\hline & & S 1 & & \\
\hline & & \(0 \cdot 1\) & - . & . \\
\hline 2 & & 1 I & 0 & \\
\hline & & HI I & 2.2812 & \\
\hline BOXPLOT & RES2 & THREE & \(\checkmark\) & \\
\hline
\end{tabular}

SCALE UNITE
\[
\begin{array}{ll}
0.2 \overline{0} 0 \bar{\theta} \\
0.0000 & 4.0020
\end{array}
\]

VARIABLE RESE

```

 #-
 ENPUT YEARS NOBS 5 FIGURE I
 ENTER DATA
81950 1955 1960 1965 1970
S VALUES READ.
IINPUT EITI NOBS 5
ENTER DATA
.227.94 31.55 33.74 38.14 45.04
5 values read.
8
PLOT FFFF US YEARS?

```


QMPM
```

INNFUT FITE NOBS 5
ENTER DATA
800.38 24.78 26.98 31.13 38.22
5 UALUES READ.
8PLOT FITZ US YEARS

```


```

8
LINE FITENTNT VS YEARS FIGURE L
AFTER I STEPS OF POLISH THE FITTED RESISTANT LINE IS:
FIT2 = -1726.9070 + 0.8960 * YEARS

```

8
(1) 41
.
THO WAY. TABLE OF DATA IN VARIABLE: LOGMAR
FIGURE M
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 \\
\hline \(1:\) & 1.4548 & 1.4683 & 1.4771 & 1. 5 Sti. & 1. 6758 \\
\hline \(\underline{28}\) & 1-3766 & 1.4150 & 1.4425 & 1.5065 & 1.5944 \\
\hline \(3:\) & 1.4548 & 1.5276 & 1.5587 & 1.6085 & 1,6739 \\
\hline 41 & 1.42\%1 & 1.5382 & 1.6075 & 1.6435 & :1.6946 \\
\hline ELEMENTARY & ANALYSIS & BY MEDIAN & POLISH. & & \\
\hline 18 & 8.0413 & 0.0080 & -0. & 213 & \\
\hline \(2:\) & 0.0119 & -0.0045 & -6. & 071 & \\
\hline \(3:\) & -0.0119 & 0. 0 ¢ \({ }^{\text {a }}\) & & 971. & \\
\hline 48 & -0.0472 & - 0 - 0 & & 472 & \\
\hline EFF: & -0.0849 & -8. 636 & & -0®0 & \\
\hline FIT: & 1.4401 & 1.4949 & & 250 & FIT \\
\hline 1. & - 4.08039 & 0.08378 & - & EFFECT
\(=0.0266\) &  \\
\hline \(2:\) & 0.0000 & 0.0852 & & -0.0754 & 1.4496 \\
\hline \(3:\) & 0.0000 & -0.0172 & & 0.0266 & 1.5516 \\
\hline 4: & 8.0263 & -0.0052 & & 0.0353 & 1.5603 \\
\hline EFFs & 8.8569 & 0.1396 & & 1.5250 & \(0 \cdot 0000\) \\
\hline FIT: & 1.5819 & 1.6646 & & 0.0089 & -1.5250 \\
\hline
\end{tabular}

8


8
BOXPLOT RES4 THREE


PLOTT RESA US CVSA FIGURE 0

LINE RESA VS CVS4 EI GRE P
AFTER 1 STEPS DF POLISH THE EITTED RESISTANT LINE IS:

2014
1) 43


ELEMENTARY ANALYSIS BY SEDIAN POLISH-
\begin{tabular}{|c|c|c|c|}
\hline & 1 & 2 & 3 \\
\hline 18 & 0.0034 & 0.0000 & -0.0015 \\
\hline 28 & \(0 \div 0080\) & -6.0809 & -0.0008 \\
\hline 38 & 0.8000 & 60009 & \(0 \cdot 0008\) \\
\hline 48 & -0.6033 & -0000 & 0.0026 \\
\hline EFF: & -908067 & -8.8022 & B.0000 \\
\hline FIT: & -9.0368 & -0.8323 & -0.0301 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & 4 & 5 & EFFECT & FIT \\
\hline 18 & -0.0003 & 0. 2 E 22 & - 0.0017 & - 0.6318 \\
\hline 2 & 0.0082 &  & -0.0052 & -0.0353 \\
\hline + & -8.0802 & - 0.6813 & 0.0017 & -0.0284 \\
\hline 4 & 9-0066 & -8.0815 & \%.8828 & -0.0273 \\
\hline EFF\% & -0.0840 & 0.0085 & - 0.6301 & 0.8080 \\
\hline FIT8 & -0.0261 & -0.0216 & 0.6080 & C. 6361 \\
\hline
\end{tabular}
\%STEM RESA
FIGURE R

sBOXPLOT RESA THREE
SCALE UNIT: DODED
0.0000 : 9.0040

VARIAELEZ RESA
*

XVI.IV. 71

1945

4.a) The analysis using median polish is shown in Figures \(u\) though \(X\); the hand calculations are shown in Figure \(\bar{Y}\) for comparison. (Note that hand calculations were done using mortait ty rates per 10,000 ifye births. Differences between computer and nand calculations. aside from the units difference, are due to rourding).

The mean polish is shown in Figure \(Z\). Residuai and diagnostic plots were not done for the mean polish. See also (d) below.

Comparing the fitted mosols from the mean f median poinsh (Figure \(Y\) vs. \(\overline{\text {, }}\) ) Biowe the two to be simil: although there is be reason to expect the two to be the same. Indeed, just as we expact the mean and median to be the same \(\because\) in very wellbehaved batches, we expect a difference ? iwi the results of mean and median polish in real (and hence not likeiy to bé wéllbehaved) data.

When performing the analysis on this data, we shail use the median polish, since it has the desirable quality of being resistant.
b). This is estimated by: comon + west effect \(+B-\bar{i}\) effect

From Figure U (median polish): \(\quad 36.076+\overline{6} .705+(-2.57 \overline{6})=40.25\)
From Figure \(Y\) (hand calculated median polish): \(36.2+7:+\) \((-2.9)=40.4\)

From Figure \(Z\) (hand calculated mean polish): \(34.0+8.3+\) \((-2.3)=40.0\)
(Note the similarity among the three.)
c) One, equitable distribution funds to .h gecgraphical region would be in proportion to its, teci, l.e., an proportion to the column fits: Hence, we wouid slirsate (from Figure u).
\(\frac{35.8}{35.8 \mp 36.3+38.4+33.5}=24.9 \%\) of the total to the NE
\(\frac{36.3}{35.8+36.3+38.4+33.5}=25.2 \%\) of the totā to the \(N \bar{C}\)
\(\frac{38.4}{35.8+36.3+38.4+33.5}=26.7 \%\) of the total to the south
\(\frac{35.5}{35.8+36.3+38.4+33.5}=23.2 \%\) of the total the west
1948

The educational campaign each region might then be difected to each of the four groups in proportion to the calculated fits (or actual observed values) for that region. (NOT the row fits, which "average" overall regions).

The ahove method however only respond to the data presented to us in Table III. A far better-although long term-solution would be to determine the (probably coumon) underlying causes of infant mortality and allocate the money to a sentralized facility (for meitical research or trating of medical personnei for r:xanpla; o regions in proportion to need (for more matemity wart bate or simply more ambulancēs), or perkaps even to nationai and zegionai mass media for educational broadcasting. In any case, UEDERSTAND the problem before pouring money into it. These data do: Nor provide all the required jnformation for UNDERSTANDING the problem. We don't even know if the ō̄served patterms are consistent over time.
d) In part (a) we analyzed the raw data by median and mean polish. The slope of the resistant line (Figure \(X\) ) of the diagnostic plot Figure W) suggests reexpression. Although the value of the slope ( -.39 ); or about -1/2) suggests reexpressin on by the \(3 / 2\) power, a more easily interpreted reexpression is to square the data (2 power). An analysis of the squared data is shown (by median poitsh) in Figures AA through DD. Note the siope of the resistant line (Figure DD) of the diagnostic plot for the reexpressed data. We might consider using the fits from THIS analysis (Figure AA) in part (c) above.
\[
29.90
\]


XVİ.IV̄. 75


MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS STANDARD AEFERENCE MATERIAL 1010a (ANSI and ISO TEST CHART No. 2)
plot ress vs cus3
FIGURE W


\section*{iLINE RESJ US CUS3}

FIGURE X
i palirs contained mising values, were not entered in fit. AFTER 1 STEPS OF POLISH THE EITTED RESISTANT LINE IS:
RES3 \(\overline{=} \quad \mathbf{0} .6526 \mp \quad-0.3885\) * CVS3

Figure \(\bar{Y}\) : Median Polish

\[
51753
\]

GMPM
Figure \(\bar{Y}\). continued

\[
\begin{aligned}
& \text { median polis̄ } \\
& \text { (Unit }=.1 \% \text { ) }
\end{aligned}
\]
\begin{tabular}{l|rrrr|rl} 
& NE & NC & \multicolumn{1}{c}{ S } & \multicolumn{1}{c}{ W } & effect & fit \\
\hline \(\bar{W}-\bar{L}\) & -10 & 9 & -11 & 20 & -154 & 108 \\
\(W=\bar{I}\) & 19 & -10 & 2 & -1 & -19 & 343 \\
\(B=\bar{L}\) & -37 & 57 & 1 & 0 & 21 & 383 \\
\(B-\bar{I}\) & 10 & 34 & 0 & -- & 71 & 433 \\
\hline effect & -7 & 0 & 21 & -29 & 362 & \\
fit & 355 & 362 & 383 & 323 & &
\end{tabular}
II) 54

Module IV

Figure 2. Mean Polish


QMPM


EIEMENTARY ANALYSIS BY MEDIAN POLISH.
\begin{tabular}{|c|c|c|c|}
\hline & 1 & 2 & 3 \\
\hline 18 & -49.0110 & 49.1862 & -125.0697 \\
\hline \(2:\) & 110.2163 & -49.1062 & 6. 8788 \\
\hline 38 & -287-9233 & 490:9023 & 12.8888 \\
\hline 4: & 49:0110 & -267-9014 & -0.0780 \\
\hline EFF\% & -3.9812 & 3.9812 & 178.1571 \\
\hline F178 & 1293:5825 & 1301:5449 & 1475.7207 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & 4 & EFFECT & Fit \\
\hline 18 & 150.2522 & -879.7622 & 417.8615 \\
\hline 28 & 0:0000 & -143.5498 & 1154.0139 \\
\hline 3: & -12.8105 & 143.5500 & 1441.1138 \\
\hline 48 & N-A. & 558.3650 & 1855.9287 \\
\hline EFF: & -168.8542 & 1297.5637 & 0.0806 \\
\hline FIT: & 1129:5695 & -0000 & -1297.5637. \\
\hline & Sing values & ED RESID & LES. \\
\hline
\end{tabular}

1STEM RES5 FIGURE BB
VARIABLE: RES5 :


3 ©. 1 111 1. 15 Hi 1490.9023

BBOXPLOT RES5 THREE


PLet RESS US CUS5


Unit 8
Quiz

Table 1 appeared in a recent issue of The Retired officers' Journal: It presents the monthiy pay received by members of the uS armed forces by pay grade (job leveis 4-10) and years of service (12-26) effective octōber, 1976.

Assume that you are à staff member of à congregeional comittee which is considering the unionization of the armed forces. Your supervisor wante to contrabt pay in the military with pay received by professionais in unionized situations (such as àt some universities). But first she wants to understand the table and has asked you to analyze it.

The analysis has been done for you by computer. Parts of the analysis and questions about thes \({ }^{2}\) parts follow.
1.a is it true that an individual in the armed forces gets a pay raise every year? Explain your answer by rēferencé to Table 1.
1.b What is the monthiy pay for someone pay grade \(\overline{7}\) who has been in the Bervice for 16 years?

Table 2 shows the pay data in median polished, "bordered tābe" form.
2. Based only on Table 2 and the stemandieaf display of the residuals from the fit in Figure 1, argue that to determine the monthly pay of an individual in the armed forcas one needs more information than pay grade and years of service oit he individual. Assume that the individual under consideration iy ife pay grade 4-10 and has been in the service éither \(12,14,16,10,20,22\), or 26 years.

Figures 2, 3, 4 show diagnostic plots of the untransformed data and two transformations, base 10 lagarichms and square root.
3. How are "comparison values" defined? In simple layman's nonquantitative language, tell your supervisor (and us, of course) the purpose of the diagnostic plot and why a log or square root trans= formation might be required.
4. What is the preferabie mode of analysis for this tabie, a transformation of the data, or an extended fit? Give the equetion of the extended fit for these data.

1059

Lastiy consider the piots of the effects versus respective variable in Figure 5.
5. Construct a simple equation, a function of pay grade and years in service, that approximates the monthly military pay of an individual. What is the yearly pay of an individual, grade 9, with 24 years of service?

TABLE 1.--MONTHLY MILITARY BASIC PAY,
OCTOBER 1976
("MILITPAY")
ENTRIES ARE IN \$
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pay Grade} & \multicolumn{7}{|c|}{Years of Service} \\
\hline & 12 & 14 & 16 & 18 & 20 & 22 & 26 \\
\hline 10 & 3407 & 3407 & 3650 & 3650 & 3895 & 3895 & 4137 \\
\hline 9 & 2920 & 2920 & 3164 & 3164 & 3407 & 3407 & 3650 \\
\hline 8 & 2804 & 2804 & 2920 & 3047 & 3164 & 3291 & 3291 \\
\hline 7 & 2318 & 2434 & 2678 & \(28 \overline{6} 2\) & 2862 & 2862 & 2862 \\
\hline 6 & 1703 & 1761 & 2040 & 2145 & 2191 & 2318 & 2514 \\
\hline 5 & 1586 & 1692 & 1820 & 1924 & 1982 & 2051 & 2051 \\
\hline 4 & 1529 & 1599 & 1669 & 1715 & 1715 & 1715 & 1715 \\
\hline
\end{tabular}

TABEE 2. -MEDIAN POIISH OF MILITPAY TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Pay Grade} & \multicolumn{7}{|c|}{Years of Service} & \multirow[t]{2}{*}{Effects} \\
\hline & 12 & 14 & 16 & 18 & 20 & 22 & 26 & \\
\hline 10 & - & 0 & - & 0 & - & - & \(\ddagger\) & 1033 \\
\hline 9 & - & 0 & - & 0 & - & & \(\mp\) & 546 \\
\hline 8 & \(\mp\) & - & - & - & - & + & - & 358 \\
\hline 7 & - & - & + & \(t\) & & - & 0 & 0 \\
\hline 6 & - & 0 & - & - & - & - & & -577 \\
\hline 5 & - & - & - & - & & & - & -797 \\
\hline 4 & + & + & - & - & \(\bigcirc\) & 0 & 0 & -974 \\
\hline Effects & -315 & -255 & -72 & 0 & 117 & 173 & 244 & 2689 \\
\hline
\end{tabular}

Key to Symbols


FIGURE 1. - RESIDUALS FROM MEDIAN POLISH FIT.
\[
\text { unit }=10^{1}
\]
\begin{tabular}{|c|c|}
\hline LO & 1-244, -173 \\
\hline -1 & 1 \\
\hline -0** & 998 \\
\hline 8 & \(7776 \overline{6}\) \\
\hline f & 55 \\
\hline \(\bar{t}\) & 32 \\
\hline -0 & 10 \\
\hline 0 & Zzzzzzzzzzzzo01 \\
\hline \(\overline{\mathbf{t}}\) & 333 \\
\hline \(\overline{\text { f }}\) & 55555 \\
\hline & 677 \\
\hline O大* & \\
\hline
\end{tabular}

Hi |129, 139, 158, 171, 171, 173

\section*{Z = "hard" \(\bar{z}\) ēro.}

: 11) 4
i) 63


ROBUST EQUATION IS: Y=-1.38231 \(X+0.080554\)

1066
1065


67
ROBUST EQUATION IS: Y=0.354679X-0.186905

1068

Zgues 5


GMFM


1a. Although the general tendency is for pay to increase with years of service, pay doēs not increase for every 2 years of service within a given pay grade. For example, in grade 4, there is no increase after 18 years of sērvice.
b. Monthly pay for somene in pay grade 7 with \(\overline{16}\) years of service is \(\$ 2,678\).
2. First of all, without a table illustrating the residuals the exact monthly pay can only be estimated. Second, the stem-and-leaf of the residuals \(\bar{s} h o w s\) that they are not \(\bar{a}\) weil-behaved batch due to the prēsence of outliers. This would indicate that the additive model is "missing part of the action". Third; the coded residuals also show that the largest and smallest residuals are aiong the edges of the table, indicating the need for a transformation or an extended fit.

All of these clues indicate that the effects and residuals of the linear model shown in Table 2 are inadequate for summarizing the data and a transformation or extended fit should be tried.

3a. Comparison Values \(\overline{=} \frac{\text { (row effect) (column effect) }}{\text { common term }}\)
b. A diagnostic plot, which graphs the comparison values on the horizontai axis and the residuals from a median polish on the vertical axis; is an indication of the adequacy of the additive model: If the plot indicates a linear relationship between the residuals and the comparison values; then the additive model is inadequate- We shouid try a transformation of the original data or an extension of the additive model; via multiplicative inter= action terms. The siope of a ifnear relationship found in the diagnostic plot should be subtracted from ito determine a transformation that might be appropriate. In thís particular case, the plot has a slope of .76. Subtracting this from 1:0 gives us .24 (ābout 1/4). We want t̄o keep the transformations simple so We try a square root instead of a quarter root (moving siightly up the ladder of powers) or a logarithm (moving sifightly down on the ladder of powers).

4a. An extended fit of the data is the preferable mode of analysis for this table.
- it makes sense that there would be \(\bar{a} \bar{n}\) interaction between ieve \(\overline{1}\) or grade achieved and the number of years spent in the service.
\(=\) the diagnostic plot indicātee a quarter root and not one of the simplèr transformations we like to work with.
\(=\) transformations ūing square roots and logarithms didn't completely work.
- the coded rēiduā \(\bar{s}\) show that the largest and smallest residuais ārē àt the borders and corners of the table:

To make sure the extended fit was the best, compare the \(\Sigma \mid\) Residuais| from the extended fit and the two transformations for the smallest sum; (assuming that the residuals were all placed in the same units).

4b. The extēnded fit modē is
\[
\begin{aligned}
\text { Data }= & \text { Common }+ \text { Row Effect }+ \text { Col Effect } \\
& +\bar{K}\left(\frac{\text { Row effect } \cdot \text { Col effect }}{\text { Common term }}\right) \\
\text { Data }= & 2689+\overline{R E}+\overline{C E}+(.76 / 2689)(R E \cdot C E) \\
= & 2689+\overline{R E}+\overline{C E}+.00028 \text { RE } \cdot \mathrm{CE}
\end{aligned}
\]
5. Data \(=\overline{2} 689+[-740 \times 40 /\) year \(]+[-2750+400 / \mathrm{pg}]\)
\(=\overline{2689}-740-2750+40 /\) year \(+400 / \mathrm{pg}\)
\(=-801+40 /\) year \(+400 / \mathrm{pg}\)
for Grade \(=\mathbf{9}\), Years \(=\mathbf{2 4}\)
Monthly Pay \(=-801+40(24)+400(9)\)
\(=-801+960+3600\)
\(=3759\)
Yearly pay \(=3759.12=\$ 45,108\)

\section*{Unit 9}

Reading Assignments

Lecture
\(9=0\)
\(9=1\)
\(9=2\)
\(\overline{9}=\overline{3}\)
\(9=4\)

Reading
Tanur, Pages \(\overline{5} 2-\overline{6} \overline{5}\)
Bickel, Hammé, \(0^{\prime}\) Connell articlé in Fairley and Mostélier, pages 113-30

Muelier, et.al. Pages 480-8
Fienberg, Chapters 1 and 2
Muēler, et.al. Pagē 489-500
Fien̄ērg, Chapter 3
Fien̄ērg; Chapter 4
Fienberg; Chapter 5

In addition, please read any articles in Fairley and Mosteller that you have not aireàdy read.

\section*{Texts:}

Fairlḗ, W. and \(F\). Mostēiler, Statistice and Pūbifc poifcy; Reading; Mass: Addison-Wesley, 1977.
Fienberg; S.E. The Analysis of Cross-clasisified categorical Data, M.I.T. Press; in press.

Muellèr, J. H ; et,al., Statisticai Reasoning in Sociology; Third edition; Boston: Houghton-Miffiin, 1977.
Tanur, J., etal., editors, Statistics: A Guide to the Unknown, San Francibco: Holden-Day, 1972.
\[
2183
\]

\section*{4}

\section*{Lecture 9-0. Introduction to Unit 9}

Introduction to Unit 9, Discréte Muitivariate Analysis
- Lecture Content:
1. Discrete vs. Continuous Multivariate Data
2. Multinomial Distribution for Contingency Tables
3. Examples

\section*{Main Topics:}
1. Discrete Multivariate Data
2. Mūtinomial Distribution
3. Examples of Contingency Tables

\section*{Topic 1. Discrete Muitivariate Data}
I. Babic issue: New "type" of data
i. Everything we have discussed thus far ; both response and carrier variablēs, has been continuous
2. Tuis implies that within a specific range, the dependent variable could take on any possible value
3. For this unit, we change this assumption
II. Problem: How do we structure "discrete" data?
1. We now assume that we have a set of vartabies that take on only à finite number of discrete values
a. Moreover, within this set we have no "independent/ dependent" dichotomy
b. Example: Alive/Dead variable;oniy two values or cātegoriē
2. We take all our variables and look at ail combinations of the categories
a. We examine all possible intersections
b. Each intersection is called a céli
3. We then take a sample (perhaps exhaustive) from a population, sample size \(\mathbb{N}\), and record the number of observations falling within each cell
4. Number of observations in each célil is called the frequency count of the cell学
III. Solution: Data structure is à Contingency Table
1. The set of all ceils and the frequencies of the cells is called a contingency table
2. The set of ali frequencies is known ās à Discrete Multivariate Data Set
a. The number of variables, \(n\), is the dimensionality of the contingency table
b. \(n\) may be \(1,2,3\), etc.
IV. Methods: How do we analyze a contingency table?
1. Generally researchers have calculated a \(\mathrm{X}^{2}\) statistic for the table and stated whether the statistic was greater than the tabulated \(5 \% \mathrm{X}^{2}\) value, and theri called it quits
2. No one really knew what to do with a table of dimension \(\geq 3\)-- could only handle 1 or 2 dimensional tables
3. Lately, we have begun to understand higher dimensional tables and have developed a sophisticated new technology-the log-linear model--for the analysis

Topic 2. Mūtínomíal Distribution
I. Basic Issue: Probability model for à Contingency Table
1. We have \(k\) cells
2. P\{observation lands in the ith cell\} = \(P_{i}\); i ranges over ail ceils
3. We take à sample \(\mathbb{Z}\) of size \(N\)
\(\overline{\mathrm{a}} \cdot \underline{\underline{I}}=\left(\bar{y}_{1} ; \bar{y}_{2}, \ldots, y_{\bar{N}}\right)\)
b. \(\bar{y}_{j}=\) appropriate cell for \(\bar{j} t h\) observation
4. Let \(\bar{x}_{i}=\) number of observations falling in the ith celi
II. Solution: Multinomial Distribution
1. \(P\left\{\bar{x}_{1}=\bar{x}_{1}, x_{2}=\bar{x}_{2}, \ldots, \bar{x}_{k}=\bar{x}_{k}\right\}=\)

\[
\text { where } \quad \sum_{i} p_{i}=\overline{1}, \quad \sum_{i} x_{i}=\tilde{N}
\]
2. So the probability distribution for a \(k\) dimensional contingency table is the multinomial
\[
1977
\]

Topic 3: Examples of Tabies
I: \(\overline{1}\) dimensiónal tā̄e-simple muitinomiai
1. Test \(\bar{f} \mathbf{I} \bar{t}\) tō a known distribution (uniform)
2. \(X^{2}\) goodness of \(\overline{\mathrm{f}} \mathrm{it}\) test
II. 1 dimensionai table-simple multinomial. Another goodness of fit test, but what distribution
III. 2 dimensional tablē--2x3
1. Test for independence between the variables
2. \(\bar{X}^{2}\) test \(\bar{f} \bar{c} \bar{r}\) independence
IV. 3 and 4 dimensional tables
1. What do we do?
2. Indepeñence between which vāriables?
3. There àre many different models to consider

QMPM

Lécture 9-0
Transparency Presentation Guide
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Lecture \\
Outline \\
Location
\end{tabular} & Transparency
Number & Transparency Description \\
\hline \[
\frac{\text { Topic } 2}{\text { Section } 1}
\] & 1 & Multinomial Distribution \\
\hline \[
\frac{\text { Topic } 3}{\text { Section } 1}
\] & 2 & Examples \\
\hline III & 3 & Examples \\
\hline IV & 4 & Examples \\
\hline
\end{tabular}
\[
89.9
\]

Muitinomial Distribution
\(P\{\) Have à table with \(K\) cells
\(\rho\{\) observation belongs in the \(i\) th \(c e \not l\}=P_{i}\) i ranges over all cells.

Take a sample \(\boldsymbol{Y}\) of size \(N\) individuals or observations.
\[
Y=\left(y_{1}, y_{a}, \ldots y^{\omega}\right)
\]
\(y_{j}=\) appropriate cell for \(j^{\text {th }}\). observation
Let \(x_{i}=\) observations falling in the th cell.
\[
\begin{aligned}
& P\left\{\bar{x}_{1}=\bar{x}_{1}, x_{k}=x_{k}, \ldots, \bar{x}_{k}=x_{k}\right\}= \\
& \quad \prod_{k=1}^{k} \frac{N!}{\overline{x_{k}!} P_{1}^{x_{1}} P^{x_{2}} \ldots P_{k}^{x_{k}}}
\end{aligned}
\]
where \(\sum_{i} P_{i}=1\) and \(\sum_{i} x_{i}=N\)

So the probability distribution for a \(k\) dimensional contingency table is the Mültinamial.

Examples of Discrete Multivariate Data Sets (Contingency Tables)
1. Simple Multinomial- One dimensional Test for fit to a specific distribution (uniform).

Random numbers, sample of \(N=250\)

\(H_{0}\) : Observations are uniformly distributed.
Should have 25 in each cell.
2. Another Simple Mütiñomial

Number of men on base when an have rive is Mit. Data from National League for a particular year.


What distribution?
Truncated Poisson; or Binomial \(9-\overline{0}\)
fl) \(\overline{8} 1\)
\[
\text { XVI.IV. } 100
\]
(3) Two Dimensional Table-

Distribution of Soviet Population in 1957 Published data by Party and Age.


Test for Indepenatince of party and age
(4) Ines Dicuensional Tebk

Sex. Marital Status, and Nogoriners 1972 NopE


1082
o. Four Dimensional Contingency Table \(2^{4}\)
"Two "panel Study (Two Interviews) where at each interval, the respondent was asked if he or she had seen on advertisement for a certain product and if he or she had bought the product.


1953

\section*{Lécture 9-1. Simple Multinomials}

Simple Multinomals-Testing for Goodness of Fit

\section*{Lecture Content:}
1. Determination of appropriate probability models
2. Pearson's \(\bar{X}^{\mathbf{2}}\) test for goodness of fit
3. Díscréte probability models
4. Continuous probability models

\section*{Main Topics:}
1. Making direct inferences about distributions
2. Specific probability models to fit

Topic 1. Making direct inferences about distributions
I. Basic Issué: Does populā́̄on distribution have a specific form?
1. Examine empirical (sample) distribution
a. Group data into a set of qualitative classes, \(C\) of them
b. Compute expected frequencies for each cell with specific hypothesized distributions
2. Test the "goodness" of various theoretical distributions
for the data
II. Solution: Goodness of Fit Test
1. Have some Null hypothesized expected frequencies \(\left\{\bar{E}_{\bar{i}}\right\}, \sum_{i} \bar{E}_{i}=N\)

2: Data give you observed frequencies \(\left\{\mathrm{C}_{i}\right\}\)
3. Compute
\[
x^{2}=\sum_{i=1}^{c} \frac{\left(\bar{O}_{i}-\bar{E}_{i}\right)^{2}}{\bar{E}_{i}}
\]
4. \(\bar{x}^{2}\) : wefght the squãed difference of 0 and \(E\) inversely
by \(\vec{E}_{i}\) cells with large departures \({ }^{-1}\) get more weight
if \(\mathrm{E}_{\mathrm{i}}\) is small if \(\bar{E}_{i}^{1}\) is small
5. The quantity \(X^{2}\) is called Pearson's Chi-Square Statistic
III. Method: How do we determine whether to reject \(H_{0}\) ?
1. \(\bar{x}^{2}\) for large \(N\), is distributed as a \(X^{2}\) random variable with \(\mathrm{C}-1\) degrees of freedom; when \(\mathrm{H}_{0}\) is true
2. We lose 1 d.f. since \(N\) is fixed
\[
21085
\]
3. If \(\mathrm{X}^{2}>\mathrm{X}_{\overline{\mathrm{C}}-\overline{1} ; \alpha}\), rēect \(\mathrm{H}_{0}\)
a. Probability that the sample data accord with \(\mathrm{H}_{0}\) is quite small
b. Doubtful that this observed \(\bar{X}^{2}\) could have origin by chance
4. When can we use this infèrential procedire?
a: Each and every sample obsēruation fails into one and only one category or class interval
b. The outcomes for the \(N\) observations in the sample are independent
c. Sample size N must be large
i. If \(C-1=1, E_{i}>10\)
ii. If \(\mathrm{C}-1>1, \mathrm{E}_{1}>5\)

1086

Topic 2. Specific Probability Models to fit
I. Discrete Modē̄̄
1. Binomial ( \(\bar{n}, \bar{p}\) )
a. n or fewer cells
b. íf we estimate \(p\), we lose an additional 1 df
2. Poisson ( \(\lambda\) )
a. ? čēils
b. If we éstimate \(\lambda\), we losé an additional 1 df
II. Gaussian probabilíty model
1. Must take infinite range and break it up into a finite number of ceils
2. Postulaté Gaussianity=
a. Convert évery observãtion into à stañard score
b. Lose 1 df for each parameter ( \(\mu\), \(\sigma\) ) that we must estimate
3. How many célis? Supposē we desire C.
a. Make intervals of equā width.
\[
\operatorname{Min}, \operatorname{Min}+\frac{M_{a x}-M i n}{C}, \operatorname{Min}+\frac{2(\operatorname{Max}-M i n)}{C}, \ldots, \operatorname{Max}
\]
\(\overline{\mathrm{B}}\). Or make each interval such that projability of an interval is \(1 / C\)
4. Fixed probability intervals are preferred to fixed width intervals.

IIS7

\title{
Lecture 9-1
}

Transparency Presentation Guide
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Lecture \\
Outilne \\
Location
\end{tabular} & Trañpāéncy Number & Transparency Description \\
\hline \[
\frac{\text { Topic } 1}{\text { Section I }}
\] & 1 & Study of Educational Achiēvement \\
\hline \[
\begin{gathered}
\text { Section II } \\
4 .
\end{gathered}
\] & 2 & Sample and Expected Results \\
\hline Section III 1. & 3 & Pearson's Chi-Squared Statistic \\
\hline
\end{tabular}

\footnotetext{
1988
}

Study of Educational Achievement (1976)
Population a set of all American citizens at beast 25 yrc . of age.
Each subject can be placed into 6 educational categories based on his/ her maximum formal education al achievement.
We also know the distribution of each of the 6 categories in 1960:
\& College Grad.
2. Some College
- High School Grad.
4) Same High stood
5) Finished \(8^{24}\) grade
a) Did not finish Eth \(^{2}\)
Frequency \(\left(p_{i}\right)\)
.18
.17
.32
.13
.17
.03

Has the distribution changed in 10 years?
\(H_{0}: N_{0}\) change in distribution.
Take a random apple of \(N=000\).

Sample and Expected Results


Expected Frequencies ( \(E_{i}\) ) = \(N P_{i}\)
How else is the empirical dist to the theoretical dist:?
\(C_{\text {compute: }} \sum_{i} \frac{\left({\overline{O_{i}}-\bar{E}_{i}}^{E_{\alpha}}{ }^{2}\right.}{E_{0}}=18.30\)

Squared difference, weighted inversely by expected frequencies.

The Quantity
\[
X^{2}=\sum_{i=1}^{c} \frac{\left(E_{i}-0_{i}\right)^{2}}{E_{i}}
\]
for very large \(N\) when \(H_{0}\) is true, is distributed as an \(x^{2}\) random variable with \(c-1\) degrees of freedom.


If \(x^{2}>x_{\text {er oj }}^{2}\), reject \(H_{6}\) with \(\alpha\) type / error
- Goodness-of-fit" fest to a Theoretical Distribution.

\section*{Lecture 9-2. 2x2 Contingency Tablē}
\(2 \times 2\) Contingency Tables: Examining Interactions

\section*{Lecture Content:}
1. 2x2 array of counts
2. Measuring association
3. Lō-ifnear models

4: Testing for independence

\section*{Main Topics:}
1. Cross-Product Ratio for \(2 \times 2\) tables
2. Log-ifnear model and presence of interaction
(Thare are no transparencies for this lecture)

\section*{GMPM}

Topic 1. Crose-product Ratio for \(2 \times 2\) tables
1. Basic Issiue: Structure of Data
1. Variables \(\bar{A}\) and \(B\); \(\bar{b} o t h \bar{a}\) levels 1 and 2
2. Two dimensional array of counts
3. \(x_{i j}\) are positive integers
4. We can convert ihe \(\bar{x}_{\text {if }}\) into probabilities
\[
P_{i j}=x_{i j} / N
\]
5. If we know \(N\); \(x_{1+}\) and \(x+1\), specifying any cell in the table allows us \({ }^{1+}\) to filit the the other 3 celle
6. Hence, table fitgelf has only 1 degree of freedom after specifying \(N\); row margin, and column margin
II. Problem: How do data exhibit interaction?
1. If variables \(A\) and \(B\) are independent, then \(\bar{x}_{i j}=\bar{x}_{i+} \bar{x}_{y}\) product of the marginai distributions
2. As Variables \(A\) and \(B\) exhibit more and more non-zeqo interaction; then \(x_{i j}\) differs more and more from \(\frac{1}{N} x_{i+} x_{+}\)
3. How do we best measure the interaction present between \(A\) and \(B\)
III. Solution: Crose-Product Ratio
1. Natural "measure of association"
\[
\alpha=\frac{x_{11} x_{22}}{x_{12} x_{21}}
\]
2. Proparties of \(\bar{\alpha}\)
a. If \(A\) and \(B\) are independent; \(\overline{\alpha=1}\)
\(\bar{b}\). \(\bar{\alpha}\) is invariant under the simultaneous interchange of rows and columus
\(\bar{c} . \quad \bar{\alpha}\) is invariant under row and colum multipilcations (not true for \(\overline{\mathrm{X}}{ }^{2}\) )
3. \(\bar{\alpha}\) is aiso called the odds ratio
\[
\bar{\alpha}=\frac{\bar{p}_{11} / \mathbf{p}_{12}}{\mathbf{p}_{21} / \mathbf{p}_{22}}
\]
a. \(\bar{p}_{1 i} I_{12} \equiv\) odds on being in the first level of \(B\); given that you are in the firbit levei of \(A\)
b. \(\bar{P}_{21} / \bar{P}_{22}\).odds on béing in the first level of \(B\), given that you are in the second level of \(B\)

Topic 2. Log-Linear model and presence of interaction
I. Basic İssue: Null model for data structure
1. If \(A\) and \(B\) are independent;
\(\log _{P_{i j}}=U+U_{1(i)}+U_{2(j)} ; \bar{i}=1,2 ; j=1,2\)
a. \(\quad \bar{U}=\frac{1}{4} \quad \sum_{i} \quad \log P_{i j}\)
b. \(\quad \bar{U}+\dot{U}_{1(1)}^{1, j}=\frac{1}{2}\left(\log P_{i 1}+\log \bar{p}_{12}\right) ; i=\overline{1}, \overline{2}\).
c. \(\quad \bar{u}+\mathrm{U}_{2(j)}=\frac{1}{2}\left(\log \mathrm{P}_{1 j}+\log \bar{p}_{2 j}\right), j=1,2\).
2. Í \(A\) and \(\bar{B}\) exhibit interaction; then
\(\log _{P_{i j}}=U+U_{1(i)}+U_{2(j)}+U_{12(i j)}\)
a. \(\mathrm{U}_{12(11)}=-\mathrm{U}_{12(12)}=-\mathrm{U}_{12(21)}=\mathrm{U}_{12(22)}\)
b. \(\mathbf{U}_{12(1 j)}\) are interaction terms
II. Problem: How do we estimate the parameters, and determine whether \(\mathrm{U}_{12(\mathrm{Ij})}\) is nonzero
1. Let \(\bar{l}_{i \mathrm{j}}=10 \overline{\mathrm{~g}} \overline{\mathrm{p}}_{\mathrm{ij}}\)
2. Then
a.. \(\quad u=\frac{1}{4} \sum_{i, j} \ell_{i j}\)
b. \(\quad U_{i(\bar{i})}=\frac{1}{2} \quad \sum_{j} \quad \ell_{i j}=\frac{1}{4} \sum_{i, j} \bar{l}_{i j}\)
c. . \(\quad u_{2(j)}+\frac{\overline{1}}{2} \quad \sum_{i} \quad l_{i j}-\frac{1}{4} \sum_{i, j}^{\sum_{i j}}\)
d. \(\tilde{U}_{12(i j)}=\ell_{i j}-\frac{1}{2} \sum_{j} \quad \bar{l}_{i j}-\frac{1}{2} \sum_{i} \varepsilon_{i j}+\frac{1}{4} \sum_{i, j}^{\sum_{i j}}\)
ifi. Solution: Testing for independence or whether \(\bar{U}_{\mathbf{1 2 ( i j )}}=0\) for all 1,j.
1. \(x^{2}=\sum_{i, j}\left[\left(x_{i j}-E\left(x_{i j}\right)\right)^{2} / E\left(x_{i j}\right)\right]\)
where \(E\left(x_{i j}\right)=N_{P_{i+}} P_{+j}\)
\[
=e^{u+u_{1(i)}+u_{2(j)}}
\]

1095
2. Definition: coodman's Measure (íkeíhood ration statistic)
\[
\bar{G}^{2}=-\bar{z} \bar{\Sigma}_{i j} \bar{x}_{i j} \mid \bar{p}\left(E_{i j}\left(\bar{x}_{i j}\right) / x_{i j}\right)=\bar{z} \Sigma_{i j} x_{i j} \ln \left(x_{i j} / \bar{E}\left(x_{i j}\right)\right)
\]
3. Both distributed under
\(\bar{H}_{0}: \bar{U}_{12(\bar{j})}=\overline{0}\), ali \(\bar{i}, j\)
as \(x^{2}\) :random variabies; 1 d \(f\)

CMPM

Lécture 9-3. Two dimensional contingency tables

Fitting Models to Two Dimensional Contingency Tables

\section*{Lecture Content:}
1. Structure of Two Dimensionai Contingency Tables
2. Log-innear models for two dimensional tables
3. Independence of the Variables

\section*{Main Topics:}
1. Log-linear models
2. Testing the fit of the model
(There are no transparencies for this lecture)

Topic 1. Log-innear modeis
I. Basic Issue: Structure of the data
i. Variabiè \(\bar{A}_{1}\) : i categories
2. Variabiē \(\bar{A}_{2}\) : J categories


4. \(\bar{m}_{i j}=E\left(\bar{x}_{i j}\right)=\) Expected number of observations in ( \(1, j\) )
5. \(\overline{\boldsymbol{l}}_{\mathrm{ij}}=\) in \(\mathrm{m}_{\mathrm{ij}}\)
ii. Method: Log-Linear model
1. Model:
\[
\bar{l}_{i j}=U+U_{1(i)}+U_{2(j)}+U_{12(i j)}
\]

Saturated model
2. Note that model is for \(\log _{e} m_{i j}\) not \(\log _{e}\left(m_{i j} / N\right)\); however,
they differ oniy by the \(U\)
3. Using ANOVA/mean polish analogy, we define:
a. Overall mean
\[
U=\frac{1}{I J} \quad \sum_{i, j} \ell_{i j}=\frac{1}{I J} \ell_{+}
\]
b. Main effect for variable \(A_{1}\) :
\[
\begin{aligned}
\bar{U}_{1(i)} & =\frac{\overline{1}}{J} \frac{\Sigma}{j} \ell_{i j}=\frac{\bar{i}}{\overline{I J}} \bar{i}_{i, j} \ell_{i j} \\
& =\frac{\overline{1}}{J} \ell_{i+}=\frac{i}{I J} \ell_{+} ; i=1,2, \ldots, i .
\end{aligned}
\]
c. Main effect for variable \(A_{2}\) :
\[
\begin{aligned}
\mathrm{U}_{2(j)} & =\frac{1}{\bar{I}} \sum_{i} \ell_{i j}=\frac{1}{I J} \sum_{i, j} \ell_{i j} \\
& =\frac{1}{\bar{I}} \ell_{+j}-\frac{1}{I J} \quad \ell_{++} ; j=\overline{1} ; 2, \ldots, \ldots \bar{J} .
\end{aligned}
\]
d. Two factors éfyect (interaction) between variables (may be zero):
\[
\dot{u}_{12(\overline{i j})}=\bar{l}_{i j}=\frac{1}{J} \ell_{i+}-\frac{1}{I} \ell_{+j}+\frac{\overline{1}}{I J} \ell_{i+}
\]
4. Evaluating degrees of freedom

U term
\(\overline{\mathrm{U}} \quad \mathbf{1}\)
\begin{tabular}{|c|c|c|}
\hline \(\mathbf{U}_{1}\) & I-1 & (1 constraint \(\bar{\Sigma} \mathrm{U}_{1(i)}=0\) ) \\
\hline \(\mathrm{U}_{2}\) & J-1 & (1) constraint \(\bar{\Sigma} \mathrm{U}_{2(\mathrm{j})}=0\) ) \\
\hline \(\mathbf{U}_{12}\) & (I-1) (J-1) & ( \(\mathrm{I}-1+\mathrm{j}-1+1\) constraints) \\
\hline
\end{tabular}
5. Other issues
a. We can also define cross-product ratiós and express the \(U\)-terms as functions of them
b. Can also consider the effect of combining categories; for example

B. Becomes

Āgè ..


1999

Topic 2. Testing the Fit of the Model
I. Basic Issue: Are \(\mathbf{A}_{1}\) and \(\mathbf{A}_{\mathbf{2}}\) Independent?
1. We fit the Model containing only the 2 one-dimensional margins
\[
\ell_{i j}=\mathrm{U}+\mathrm{U}_{\mathrm{I}(1)}+\mathrm{U}_{2(\mathrm{j})}
\]
2. This implies that
\[
\bar{m}_{i j}=\frac{\overline{1}}{N} \bar{x}_{i+} \bar{x}_{i j}
\]
3. We call this model \(1 / 2\); and compute
\[
G^{2}=2 \sum_{i \cdot j} x_{i j} \log \left(\frac{x_{i j}}{m_{i j}}\right)
\]
4. \(\mathrm{G}^{2}-\mathrm{X}^{2}(\mathrm{I}-1)(\mathrm{J}-1)\)
to test \(H_{0}: A_{1} \& A_{2}\) are independent
íl. Secondary issue: Evaluation of Fit itseif
1. Compute Preeman - Tukey deviates
\[
z_{i j}=\sqrt{x_{i j}}+\sqrt{x_{i j}+1}-\sqrt{4 m_{i j}+1} \approx 2 \sqrt{x_{i j}}-2 \sqrt{m_{i j}}
\]
2. \(\bar{z}_{i j}-\bar{N}(0, i)\)
3. Stem-and-Leaf display of the deviates shouid be Gaussian in shape; any \(\mathrm{z}_{\mathrm{ij}}\) greater than 2 in absolute value is suspect.

Lecture 9-4. Three Dimensional Contingency Tables

\section*{Fitting Modeis to Three Dimensional Contingency Tables}

\section*{Lecture Content:}
1. Structure of Three Dimensional Contingency Tables
2. Log-linear Models for Three Dimensional Tābles

\section*{Main Topics:}
1. Log-innear models
2. Finding the "best" model
(There are no transparencies for this lecture)
\[
\$ 101
\]

Topic 1. Lō-1inear models
I. Basic Issue: Structure of the data
1. Variable \(A_{1}:\) I categories
2. Variable \(\mathrm{A}_{2}\) : J. categories
3. Variable \(\mathbf{A}_{3}: \mathbf{K}\) categories
variabléa \({ }_{3}\)

\(\underset{A_{1}}{\text { variable }}\)


1102

\section*{II. Method: Log-inear model}
1. Sacurated Model:
\[
\begin{gathered}
\bar{l}_{1 j k}=u+u_{1(i)}+U_{2(j)}+u_{3(k)}+u_{12(i j)}+ \\
U_{13(i k)}+U_{23(j k)}+U_{123(i j k)}
\end{gathered}
\]
2. Constraints
\[
\begin{aligned}
& \text { a. } \sum_{i} U_{1(i)}=\sum_{j} U_{2(j)}=\sum_{k} U_{3(k)}=0 \\
& \text { b. } \sum_{i} U_{12(i j)}=\sum_{i} U_{13(i k)}=\sum_{j} U_{23(j k)}=0 \\
& \text { c. } \sum_{j} U_{12(i j)}=\sum_{k} U_{13(i k)}=\sum_{k} U_{23(j k)}=0 \\
& \text { d. } \sum_{i} U_{123(i j k)}=\sum_{j} U_{123(i j k)}=\sum_{k} \bar{U}_{123(i j k)}=0
\end{aligned}
\]
3. We rarely compute these U-terms. We merely calculate \(G^{2}\) to find best fitting model
4. Evaluating degrees of freedom
\begin{tabular}{|c|}
\hline U term \\
\hline U \\
\hline \(\mathrm{U}^{1}\) \\
\hline \(\mathrm{U}^{1}\) \\
\hline \(\mathrm{U}_{3}^{2}\) \\
\hline \(\mathrm{U}^{3}\) \\
\hline \({ }^{13}\) \\
\hline \({ }^{1} 23\) \\
\hline \(\mathrm{U}_{123}\) \\
\hline
\end{tabular}
\(\frac{d f}{I}\)
\(\mathrm{I}-1\)
\(\mathrm{~J}-1\)
\(\mathrm{~K}-1\)
\((\mathrm{I}-1)(\mathrm{J}-1)\)
\((\mathrm{I}-1)(\mathrm{K}-1)\)
\((\mathrm{J}-1)(\mathrm{K}-1)\)
\((\mathrm{I}-1)(\mathrm{J}-1)(\mathrm{K}-1)\)
(1 constraint)
(1 constraint)
(1 constraint )
( \(\mathrm{I}+\mathrm{J}-1\) constraints)
( \(\mathrm{I}+\mathrm{K}-1\) constraints)
( \(\mathrm{J}+\mathrm{k}-1\) constraints)
( \(\mathrm{I} 3+\mathrm{IK}+\mathrm{JK}-\mathrm{I}-J=\mathrm{K}+1\) con= straints)
5. To find the correct df for \(\bar{a} G^{2}\) of one of the \(\frac{8}{}\) possible models; we mereiy bubtract from IJK the degrees of freedom for every term in the model
\[
1103
\]

\section*{Topic 2. Finding the "Best" Model}
I. Basic Issue: Descriptions of the Models
1. Thére are 8 rēevant log-linear models; of 4 different types

2: The models, by type are
a. Complété Independencē, Model 1/2/3.
\(\log _{1 j k} \mathrm{~m}_{1 \mathrm{U}}+\mathrm{U}_{1(1)}+\mathrm{U}_{2(\mathrm{j})}+\mathrm{U}_{\mathbf{3}(\mathrm{k})}\)
all interactions are zero
b. Single associātion models.

Modè̄ \(\bar{s}\) 12/3, \(13 / 2,23 / \overline{1}\) all but one 2 factor interaction is zero.
i. \(\overline{12 / 3: ~} \overline{\log }_{1 \mathrm{~g} k}=\bar{U}+\bar{U}_{1(1)}+\bar{U}_{2(j)}+\bar{U}_{3(k)}+\bar{U}_{12(1 j)}\)
ii. \(\overline{13 / 2:} \overline{\log } m_{1 j k}=\bar{U}+\bar{U}_{1(i)}+\bar{U}_{2(j)}+\bar{U}_{3(k)}+\bar{U}_{13(i k)}\)
iij. \(23 / 1: 10 g m_{1 j k}=\bar{U}+\bar{U}_{1(i)}+\bar{U}_{2(j)}+\bar{U}_{3(k)}+\bar{U}_{23(j k)}\)
c. Conditional independence models.

Models \(12 / 13 ; 12 / 23 ; 13 / 23\)
Conditional on the level of the variable inciuded in the two interactions, the other two variables are independent
i. \(\quad 12 / 13: \overline{l o g}_{10} \bar{m}_{1 j k}=\bar{U}+\bar{U}_{1(1)}+\bar{U}_{2(j)}+\bar{U}_{3(k)}+\bar{U}_{12(1 j)}+\)
\[
\mathrm{U}_{13}(1 k)
\]
11. \(12 / 23: \log \bar{m}_{1 j k}=U+\dot{U}_{1(1)}+\bar{U}_{2(j)}+\dot{U}_{3(k)}+\dot{U}_{12(1 j)}+\)
\[
\overline{\mathrm{U}}_{23(\mathrm{j} \bar{k})}
\]
iii. \(\overline{13 / 23: ~} \overline{l o g}_{1 j k}=\bar{U}+\bar{U}_{1(i)}+\bar{U}_{2(j)}+\bar{U}_{3(k)}+\bar{U}_{13(i k)}+\)
\[
\mathrm{U}_{23(\mathrm{jk})}
\]

1104
d. No three factor interaction model
\[
\begin{aligned}
& \text { Model 12/13/23 }
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{U}_{13(i k)}+\mathrm{U}_{23(j k)}
\end{aligned}
\]
II. Problem: How do we compute ceil estimates
1. All but the \(12 / 13 / 23\) model have "closed form" cell expected values
2. The cell estimates for \(12 / 13 / 23\) model must be found by Iterative Proportional Fitting
3. Cell estimates; \(m_{i j k}\) are
a. \(\overline{1 / 2 / 3: ~} m_{1 j k}=\frac{1}{\overline{\mathbf{N}}^{2}} x_{1+\mp} \bar{x}_{+j+} \bar{x}_{++k}\)
b. \(12 / 3: m_{i j k}=\frac{1}{N} \bar{x}_{i j+} \bar{x}_{+1 k}\)
c. \(\overline{13 / 2}: m_{\overline{i j k}}=\frac{\overline{1}}{N} \bar{x}_{i+k} \bar{x}_{+j \mp}\)
d. \(23 / 1: m_{1 j k}=\frac{\overline{1}}{N} \bar{x}_{+j k} \bar{x}_{i++}\)
e. \(12 / 13: m_{i j k}=\frac{1}{\bar{x}_{i+\eta}} \bar{x}_{i j \mp} x_{i+k}\)
f. 12/23: \(\quad_{i j k}=\frac{-1}{x_{i j+}} \bar{x}_{i j+} \bar{x}_{+j k}\)
8. 23/13: \(\bar{m}_{i j k}=\frac{1}{x_{i+k}} \bar{x}_{i+k} x_{+j k}\)
h. 12/13/23: mijk found by iterative proportional fitting
4. Main task is to determine which model fits
III. Solution: Hypothesis tests for each model
1. For each of the 8 models, we have a null hypothesis that the model is an accurate description of the data
\[
\pm 105
\]
2. We compute \(\bar{a} \mathrm{G}^{2}\) for each model; and determine whether
\[
\bar{G}^{2}>x_{\mathrm{df} ; \alpha}^{2} \text { where } \mathrm{df} \text { is as follows }
\]
a. \(\overline{1} / 2 / 3: \quad \bar{G}^{2}\) has \(I J K-(I+J+K)+2 \quad \overline{d f}\)
b. 12/3: \(\mathrm{G}^{2}\) has ( \(\left.\mathrm{I} \mathrm{J}-\mathrm{i}\right)(\mathrm{K}-\mathrm{I}) \mathrm{df}\)
c. \(13 / 2\) : \(\mathrm{G}^{2}\) has ( \((\mathrm{K}-1)(\mathrm{J}-1) \mathrm{df}\)
d. 23/1: \(\bar{G}^{2}\) has ( \(\mathrm{JK}-\mathrm{l}\) ) ( \(\mathrm{I}-\mathrm{I}\) ) df
e. 12/13: \(\bar{G}^{2}\) has ( \(\mathrm{J}-\overline{\mathrm{I}}\) ) ( \(\mathrm{K}-\mathrm{i}\) ) I df
f. 12/23: \(\mathrm{G}^{2}\) has ( \(\mathrm{I}-\overline{1}\) ) \((\mathrm{K}-\mathrm{i}) \mathrm{J}\) df
g. 23/13: \(\bar{G}^{2}\) has ( \(\mathrm{I}-1\) ) \((\mathrm{J}-1) \mathrm{K}\) df
h. 12/13/23: \(\mathrm{G}^{2}\) has (I-i)(J-i)(K-i) dif
3. Strive for simplicity: if 2 models fit, choose the less saturated of the two
4. Calculate Freeman-Tukey deviates for the best fitting model and examine them
5. Rearrange table to emphasize fit
6. Examine relevant 2 dimensional margins

\title{
Lécturē 9-4 \\ Transparency Presentation Guide
}

\section*{Lecture Outilne Location}

\section*{Topic 1} Section I. 1.

Section II. 4.

Topic 2
Section II.
3.

Section III.
6.
6.
6.
6.
6.
6.

Transparency
Number Transparency Dascription

1 2

3

4
\(\overline{5}\)

6

7
\(\overline{8}\)
9

Log-1inear model and data structure

Degreés of frēedom and model typēs

> Cell estimatés

NBER=Thorndike, Hagen Study
NBER= \(\bar{T}, \overline{\mathrm{H}}\) data
NBER=T,H Two Dimensional Margins
Modē fitting
NBER-T, \(\overline{\mathrm{H}}\) Data \(\overline{\text { Rearranged }}\)
NEER-T, H Freeman Tukey Residuals

207

Three Dimensional Contingency Tables table: variables \(A_{1}, A_{3}, A_{3}\) at kids \(\bar{I}, \bar{J}, K\)

entries are \(X_{i j} k\)

Fully saturated log linear model
\[
\begin{aligned}
& \text { ting (eck) } \\
& \sum_{U_{i}} \sum_{(i, j} U_{i(1)}=\sum_{i} U_{a(b)}-\sum_{M} U_{n(N)}=0
\end{aligned}
\]

We very rarely compute these \(u\)-tums ... merely calculate 9.4 \(G^{2}\) to find best filling model.
\[
1108
\]

QMPM

Degrees of Freedom
\begin{tabular}{c}
\(\frac{U \text {-term }}{U}\) \\
\(U_{1}\) \\
\(U_{2}\) \\
\(U_{3}\) \\
\(U_{12}\) \\
\(U_{13}\) \\
\(U_{23}\) \\
\(U_{123}\) \\
\hline
\end{tabular}
\(\frac{d f}{1}\)
\(\mathbf{T}-\mathbf{I}\)
J-I
\(\bar{x}=1\)
\((5-1)(5-1)\)
( \(\mathrm{I}-1\) ) \(\mathrm{K}-1)\)
( \(5-0(k-1)\)
\((x-1)(J-1)(k-1)\)
[2]
To find of for \(C^{2}\) :
subtract from \(I\) SK the
degrees of freedom for
every term in model.
ecg. \(1 / 2 / 3\)
\(G^{2}\) has \(I J K-(I-1)\) -
(J-1) \(-(x-1)-1=\)
IJK-(I+J+k)+2 \(d f\) 。

There are \(8 \mathrm{log}=\) linears models of 4 different types.

Type A. \(1 / 2 / 3\) complete independence -ll interactions are zero
\(\log \hat{M}_{i j k}=U+U_{i(k)}+U_{2(j)}+U_{3}(k)\)
B. \(12 / 3,13 / 2,23 / 1\), Single association model's.
ail but one 2 factor interaction is zero.
\(12 / 3 \log M_{i j k}=U+U_{i}(i)+U_{i}(j)+U_{s}(i)+U_{12}(i)\)
\(13 / 2 \log M_{i j k}=U+U_{i}(i)+U_{2}(j)+U_{3}(k)+U_{i j}(i k)\)
23) \(\log M_{i j k}-U+U_{1}(u)+U_{2}(j)+U_{3}(m)+U a s(j \bar{k})\)
c. \(12 / 23 ; 13 / 23,12 / 13\) Conditional independence models conditional on keel of owe variable, remaining two independent.
\(12 / 33 \log M_{i j k}=U+U_{1}(i)+U_{a(j)}+U_{s(i)}+U_{12(i j)}+U_{2 s(j k)}\)

\(12 / 13 \log M_{i j} K=U+U_{i}(i)+U_{a}(j)+U_{3}\left(w+U_{i 2} l_{i j}\right)+U_{13}(i k)\) \(\qquad\)
D. \(12 / 12 / 23\) No three factor intersection model

\[
1109
\]

Model Degrees of Freedom
\(1 / 2 / 3 \quad T j K-(I+j+K)+2\)
12/3 (2j-ixk-1)
\(13 / 2 \quad(5 x-i)(7-i)\)
\(23 / 1\)
\(12 / 13\)
\(12 / 23\)
\(13 / 83\)
12/15/as

Cell estimates, \(\bar{M}_{i j k}=\) \(\frac{1}{N}, x_{i+i} x_{i j+} x_{+i k}\)
\(\frac{1}{d} x_{i j}+x_{+0 k}\)
\(\frac{1}{1} \bar{x}_{i+5} x_{i j}+\)
市 \(x_{j-j k} X_{i+4}\)
在+1\(X_{i j}+X_{i}+k\)
\(x_{1}^{\frac{1}{j}+}+X_{i j}+X_{i j} k\)
\(x^{\frac{1}{m k}} X_{i+k} X_{i j} k\)
Found by Iterative Prop Fitting
1. We seek \(G^{a}\) values slightly greater than the corresponding degrees of freedom.
2. Strive for simplicity --if 2 models fit, choose the less saturated of the 2 if possible.

Calculate Freeman-Tukey dwiates for the best filing model, and stem-and-leaf them to find targe deviations.
Rearrange table to emphasise fit-Examine relevant 2 dim. margins.

NBER - Thorndike, Hagen Study
Subjects all took a series of U. S. Air Force aptitude tests in 1943. Relatively homogenous in age, all had high school education or the equivalent and had been accepted by the fir Force for Aircrew Training Program.

Aptitwe data gathered in 1943, Education and Occupation data -btained in following studies in 1855 and 1969.

Qecupation classes Variable 3
\(01=\) Self -employed (business)
02 = Self - employed (professional)
03 = teacher
OY = salary (employed)
Educptica lesses Variable 1
ET \(=\) High School
\(E^{2}=\) some college
E3. College
EW = College +
\(\frac{\text { Aptitude Class }}{\text { A! Lowest }}\)
Variable 2

AS Highest
[5]


02 Sen Enproed Hopecienal


24. Salery, Empleyed

\(9-4\)
[6]

\section*{Two-Dimensional Margies}



\[
9-4
\]
\[
2114
\]


If \(=80\) - (structural zeros)-(estimated parameters) structural zeroes \(=10\)


\footnotetext{
\(\therefore \because\)
}

Rearranged data to Reflect Conditional Independence of \(O\) and \(A\),given \(E\)
\(E 1\)


\begin{tabular}{c|ccccc}
\(E 3\) & 11 & 12 & 13 & 14 & 45 \\
01 & 22 & 60 & 85 & 47 & 19 \\
02 & 8 & 15 & 25 & 10 & 12 \\
03 & 1 & 3 & 5 & 2 & 1 \\
04 & 107 & 206 & 33 & 179 & 99
\end{tabular}
\begin{tabular}{cccccc} 
Ir & 11 & 12 & 13 & 14 & 15 \\
01 & 3 & 12 & 25 & 8 & 5 \\
02 & 19 & 33 & 83 & 45 & 19 \\
03 & 19 & 0 & 86 & 36 & 14 \\
04 & 42 & .92 & 191 & 97 & 99 \\
\hline
\end{tabular}

\section*{\(\sqrt{0}+\sqrt{6+1}-\sqrt{1 E+1}\)}
[9]
Freeman-Tukey Residuals for Model ca/13


9-4
1117

QMPM

\section*{Homēork, Unit 9}
1. The number of animal bites reported in three successive weeks in 1967 to the Chicago Board of Health were as follows:
\begin{tabular}{cccc} 
Week & 1 & 2 & 3 \\
Number of Bites & 268 & 189 & 199
\end{tabular}
a. Test the null hypothesis that the weeks are identical.
\(\bar{b}\). Explain why the uuli hypothesis in part(a) was or was not rejected. How could differences or similarities in the three weeks produce this finding?
2. We have taken a random sample of 148 rétarded children and recorded their IQ score (dichotomous: 55-69 and 40-54) and season of birth.
\begin{tabular}{cc} 
IQ & Summer \\
\(55-69\) & 29 \\
\(40-54\) & 13
\end{tabular}
\begin{tabular}{cc} 
Birth & \\
Winter & Spring \\
12 & 18 \\
20 & 20
\end{tabular}

In this sample, are IQ and Birth Season independent? Why or why not?
3. Consider the incidence of leukemia among survivors of the atomic bombings of Hiroshima and Nagasaki. These cases were recorded from 1950-1958.
\begin{tabular}{ccc} 
Dose in-rads & \% population Exposed & Cases \\
\hline\(>81\) & 11.03 & 34 \\
\(21-80\) & 13.41 & 5 \\
\(<20\) & 75.56 & \(\frac{12}{51}\)
\end{tabular}
a. If the number of reported cases were independent of the amount of radiation, what would be the expected number of cases for each of the three dosage categories?
b. Test the null hypothesks that leukemia incidence is independent of the amount of radiation exposure.
\[
1118
\]
4. The data aet to be dnalyeed for this problem concerns sex bias in Gradura admisions at Berkeley. The articie was pubíshed in science, Volune 187, page 398, and is in the Fairley and Mosteller collection.

After careful perusal of the articie, you should feel that the authors have not "done justice to this table. What we need is a log-lineār
 pages:

Your assignment is to find the best fítting modè for this \(2 \times 2 \times 100\). table, and to interpret it. Also determine whether there is a 3 factor interaction.
\(\bar{I}\) suggest you fit all the possible models... there are 8 of them.
\[
1119
\]

\section*{Berkeley Graduate Admissions Data}

Fall Quarter 1973


\section*{Honework Unit}

Solutions
1. a) Anfmal Bites reported in 3 successive weeks in 1967 to Chicago Board of Health


Hence we reject \(\bar{H}_{0}\); the weeks àe not idenicical.
b) We reject the null hypothesis because the probability that the data resulta in such an extreme (large) value of \(\bar{x}^{2}\) under \(H_{0}\) is (much) less than . 01 . The differences among the three weeks could be due to weather (more bites in warm or sunny weather than cool or rainy weather, ; the lunar cycie; or, given data for many other weèks. "Week 1" may just be an outlier; or the hígh point of an "animal bite cycle". (It is difficult to make inferences about the reasonableness of one data value given a sample of only 3).

\section*{1121}

QMPM
2. Season of birth and IQ acores
\(H_{0}\) : Season of Birth and iq scores are independent.
\begin{tabular}{|c|c|c|c|c|c|}
\hline IQ & Sumer & Autuma & Winter & Spring & \\
\hline 55-69 & 29 & 19 & 12 & 18 & 78 \\
\hline 40-54 & 13 & 17 & 20 & 20 & 70 \\
\hline total & 42 & 36 & 32 & 38 & 148 \\
\hline ( \(\bar{x}_{+j}\) ) & & & & & ( \(\mathbf{x}_{++}\)) \\
\hline
\end{tabular}

Expected values \(=\frac{x_{i+x_{+1}}}{x_{+}}\)
\begin{tabular}{l|cccc|} 
& Summer & Autum & Wintē & Spring \\
IQ & & & \\
\(55-69\) & \(2 \overline{2} . \overline{1}\) & 19.0 & 16.9 & 20.0 \\
\(40-54\) & 19.9 & 17.0 & 15.1 & 18.0 \\
\hline
\end{tabular}
\[
x^{2}=7.98 \quad x^{2}{ }_{3 ; .05}=7.82 \quad \bar{x}_{3 ; .01}=11.34
\]

The observed vaiue of \(\overline{\mathrm{x}} \overline{\mathrm{X}}^{\text {is }}\) just significant \(\bar{a}\) the .05 level, hence we reject \({ }^{0}\) at the \(5 \%\) level. Note that we accept \(\mathrm{H}_{0}\) (independence) at the \(1 \%\) leve 1 .
\[
2122
\]
3. Incidence of Leukemia among survivors of the atomic bombings of Hiroshima \& Nagasaki (1950-1958)
\begin{tabular}{|c|c|c|}
\hline Dose in Rads & \% Population Exposed & Cāses \\
\hline \(81+\) & \(\underline{11} .03\) & 34 \\
\hline 21-80 & 13.41 ) & 5 \\
\hline 0-20 & 75.56 & 12 \\
\hline
\end{tabular}
\(\mathbf{H}_{0}\) : Leukeria incidence independent of amount of exposure
Under \(H_{0}\), \(11.03 \%\) of the reported cāses would be in \(8 \overline{1}+\) rad group, \(13.41 \%\) of the cases in \(21-80\) group, and \(75.56 \%\) in \(0-20\) group.
\begin{tabular}{cccc}
\(9_{i}\) & \(.1103 \times 51=5.63\) & \(.1341 \times 51=6.84\) & \(.7556 \times 51=38.54\) \\
\(0_{i}\) & 34 & 5 & 12
\end{tabular}
\[
\begin{array}{ll}
\bar{x}^{2}=161.73 & \text { huge } \\
\bar{x}_{2 ; .05}^{2}=5.99 & x_{2 ; .01}^{2}=9.21
\end{array}
\]

Hence we reject \(H_{0}\); the incidence of leukemia is not independent of exposure.

\section*{1123}

QMPM
4. The saturated model 123 is
\(i_{i j k}=u+u_{1(i)}+u_{2(j)} \mp u_{3(k)} \mp u_{12(i j)}+u_{13(i k)}+u_{23(j k)}+u_{123(i j k)}\)
where: \(i(=1 ; 2 ; \ldots, 100)\) refers to department,
\(j\) ( \(=1,2\) ) refers to sex;
\(k\) ( \(=1,2\) ) refers tō admit/deny.

We fit all 8 models
\(1 / 2 / 3\)
12/3
13/2
23/1
12/13
12/23
13/23
12/13/23
a) (1/2/3) complete independence

Under this mode there is no association between any pair of variables, nor among ali three together.

Department; Sex; and Admission decision are all independent.
The observed \(\mathrm{X}^{2}\) statistic was 5703
The observed \(\mathrm{G}^{2}\) statistic wās 5688
The model has ( \(\mathrm{I} J \mathrm{JK}=\mathrm{I}=\mathrm{J}-\mathrm{K}+2\) ) \(=298\) degrees of freedom. \(x^{2}=\frac{1}{2}(\sqrt{595}+1.65)^{2}=399.11\) Hence we reject this model.

1124
b) \((1,2 / 3)\)

Under this model admision is independent of sex and department. Sex and department however are asociated indicating a tendency for eāch sex to be more strongly pafeferred by some departments at the expense of other departments.

The observed \(\mathrm{X}^{2}\) statitic was 2262
The observed \(\mathrm{G}^{2}\) statistic was 2420
The model has ( \(\mathrm{IJ}-1)(\mathrm{K}-1) \equiv 199\) degrees of freedom
\(\mathrm{x}^{2} .05 \div \frac{1}{2}(\sqrt{397}+1.65)^{2}=232.74\)
Hence we reject this model.
c) \((1,3 / 2)\)

Under this model sex is independent of admission and department. Admission and department are however associated, indicating a tendency for some departments to be easier to enter than expected, while other departments are hārder to enter than expected.

The obsērved \(\mathrm{X}^{2}\) stātistic wās 3 j 1 s
The observed \(\mathrm{G}^{2}\) statistic was 3428
The model has ( \(I K-1\) ) \((J-1)=199\) degrees of freedon
\(X_{.05}^{2} \equiv(\sqrt{397}+1.65)^{2}=232.74\)
Hence we reject this model.
d) \((2,3 / 1)\)

Under this model department is independent of admission and sex: Admission and sex are associated, indicating an overall pattern of sex discrimination. Closer examination will suggest whether this discrimination favors males or females; the mere presence of the \(u_{23}\) term does not indicate which sex is favored.

The observed \(\mathrm{X}^{2}\) statistic was 5407
The observed \(\mathrm{G}^{2}\) statistic was 5585
The model has (JK-1)(I-1) = 297 degrees of freedom
\(\mathrm{X}_{.05}^{2}=\frac{1}{2}(\sqrt{593}+1.65)^{2}=338.04\)
Hence we reject this model

GMPM
é) (1,2/2,3) (conditional independence of variables 1 and 3)
Undēr thins modéi department and sex, and admission and bex are condítionaily independent (for a given sex, department and admission are independent). Hence for males (and also for females), individuals have equal chances for admission to each department.

The observed \(\mathrm{X}^{2}\) statistic was 2173
The observed \(\bar{G}^{2}\) stātistic was \(2 \mathbf{3} 16\)
The modē has (J) (I-1) (K-1) \(\equiv 198\) değrees of freedom
\(x_{-05}^{2}=\frac{1}{2}(\sqrt{393}+1.65)^{2}=231.65\)
Hence we reject this model.
f) ( \(1,3 / 2,3\) ) (conditional independence of variables 1 and 2)

Under this model department and admission, and admission and sex are associated. Department and sex are conditionally independent (for a given admission decision, department and sex are independent).

The observed \(\mathrm{X}^{2}\) statistic was 3044
The observed \(\mathrm{G}^{2}\) statistic was \(\mathbf{3} 324\)
The model has \((K)(I-1)(J-1)=198\) degrees of freedom \(\mathrm{x}_{.05}^{2} \equiv \frac{1}{2}(\sqrt{393}+1.65)^{2}=231.65\)

Hence we reject this model
g) ( \(1,2 / 2,3 / 1,3\) ) (No 3 factor interaction)

Under this model each pair of variables is associated, but together independent of the third.

The observed \(\bar{X}^{\mathbf{2}}\) statistic was 151
The observed \(G^{2}\) statistic was 155
The model has (I-1)(J-1) (K-1) =99 degrees of freedom
\(\chi_{.05}^{2} \equiv \frac{1}{2}(\sqrt{197}+1.65)^{2}=123.02\)
Hence we reject this model.
h) ( \(1,2 / 1,3\) ) (conditional independence of variables 2 and 3)

Under this model department and sex, and department and admission are associāted. Admission and sex are conditionally independent (for a given department, admission and sex are independent). There is a tendency for some departments to attract more male (or female) applicants than otherwise expected ād a tendency for some departments to be harder to enter than otherwise expected. However, the decision in each department, to admit or deny an applicant is independent of the applicant's sex. This is an extremely important conclusion.
\[
\begin{aligned}
& \text { The observed } \mathrm{X}^{2} \text { statistic was } 156 \\
& \text { The observed } \mathrm{G}^{2} \text { statistic was } 159 \\
& \text { The model has (I) }(\mathrm{J}-1)(\mathrm{K}-1)=100 \text { degrees of freedom } \\
& x^{2} \doteq \frac{1}{2}(\sqrt{199}+1.65)^{2}=124.14 \\
& x^{2} \doteq 135.81 \\
& X_{.01}^{2} \doteq 140.17 \\
& \text { Hence we reject thís mode1 }
\end{aligned}
\]

However, this model fits better than the other 7 models, with the possible exception of \(12 / 13 / 23\). This model is preferred because it \(\overline{\text { is }}\) more parsimonious than \(12 / 13 / 23\).

\section*{Conclusion:}

Of all the models, the "best fit" was achieved by model \((1,2 / 1,3)\), ( \(h\) ), conditional independence of variables 2 and 3. The fit and the Freeman-Tukey residuals for this model should now be compüted. We rearrange the data into \(1002 \times 2\) small tables. Each has the structure:

Department i

for all departments \(i \equiv 1,2, \ldots, 100\).

\section*{1127}

\section*{QMPM}

Within each of these tables, the sex and admit/deny variables are independent;
\[
\bar{i} \bar{e}: \quad \bar{\alpha}_{i}=\frac{x_{i 11} \bar{x}_{i 22}}{x_{i 12} x_{i 22}} \approx \overline{1} .
\]

We next give the stem-and-leaf and boxplot of the \(F-T\) residuals. We suppress displaying the \(100 \times 2 \times 2\) array of the rearranged data and residuals because of lack of space.

The stem-and-ieaf display of the residuals is symetric, and indicates that there are very few deviant cells. In fact, we see only 7 celis \(>1.96\) in abbsolute value, a number much smallér thān the \(05(400)=20\) expected \(\bar{b} y\) chance. Perhaps the variance of the residuals is smaller than 1 .
```

BLE, \overline{RES ;}
= 0.0100

0.0100								
L0 1	-3.5047	-2.7362	-2.6693	-2.0501	二. 4364	-1.5976	-1.4176	-1.2842
LO I	-1.2542	-1.2460	-1.1913	$-1,1800$. 8219	-1.1156		

 -10
 -B I 87444210
 -8}
 -6 I 8B6́554443}3\mathbf{32200
 -5 I 8733320
 -4 i 9644443̄]
 -3 1 9987766555444442110000
 -2 I 9886544333333333211111111000
 -1 1 9999877666544433332000000000
    ```

```

 O I 000000000000%:.2222223344555555678888999
 1 i 0011223333444444:44556666777788
 2 I 000011233334555567888888899
 I 000000111111112223333444555666666667778899
 I 11111112334456677789999
 I 001112223355666679
 I 0013445688999
 233336789
 0001388
 I 0034489
 I 03379
 11 I 2247
    ```

```

 HI I 2.6020
    ```
RES THREE

RLE: RES
*


\section*{QMPM}
\[
\text { Quiz; Unit } 9
\]

Name \(\qquad\)

Write all your answers on these pages. Point totals are given in parentheses prior to each question. You have sixty (60) minutes for this quiz: Goód luck!
(40) 1. You are interested in the relationship between family income and the number of children per family in a small township of 1000 families.

Unfortunately, you do not have available the family income and number of children for each family. Your reṣearch assistant has been able to gather from each family only answers to the two questions:

Is your family income (annual) greater than \(\$ 8000\) or less than \(\$ 8000\) ?

Does your family have 3 or more children, or 2 or fewer children?
a. Explain briéfly to your townshíp supervisor what you have implied by the statement:
"Based on this two dimensionai contingency table; the number of children per family is independent of the annual family income."
\[
\geq 131
\]
b. Your research assistañ has misplacé the actuai céi counts for the table, but has managed to keep the one-dimensional margins of the tabie in his head.

The margins are


Amaze your research assistant by computing a two dimensional table from these one dimensional margins that exhibits no interaction.
c. Fortunately, your sumer intern has filed away the actual céli counts. She says that the observed frequencies are:
family income


Please construct and test a hypothēsis for your supervisor for no interaction in the observed table. Usē \(\alpha=.025\). Is there any interaction present?

1132

GAP
(50) 亿. You are interested in studying what patient characteristics influence the length of stay of hospital patients after surgical procedures have been performed on them:

You have data on 10000 surgical patients from Massachusetts General Hospital in 1976.

The patients are placed into cells of a 4 dimensional contingency table with variables:

Var. 1: Length of Stay, 4 categories:
\(\leq 1\) day, 1 day - 1 week, 1 week - 1 month; \(>1\) month.

Var. 2: Age, 3 categories :
\(\leq 30\) years, 30-50 years, \(>50\) years
Var. 3 : Sex, 2 categories:
Male, Female
Var. 4: Preoperative status, 4 categories:
1 =excellent, 2 = good, 3 = fair, 4 = poor
You use the stepwise procedure to fit loglinear models to this \(4 \times 3 \times 2 \times 4\) table.

The first stage of the fitting process yields the following results:
\begin{tabular}{crr} 
Model & de & \multicolumn{1}{c}{\(\mathrm{G}^{2}\)} \\
\(1 / 2 / 3 / 4\) & 86 & 375.4 \\
\(12 / 13 / 14 / 23 / 24 / 34\) & 57 & 41.6 \\
\(123 / 124 / 134 / 234\) & 18 & 9.3
\end{tabular}
a. What can you conclude from these results with regards to choosing the "best-fitting" log linear model?
213:3
b. You ficd the following test statistics for each of the 2 factor interactions:
\begin{tabular}{cr} 
Interaction & Conditional \(G^{2}\) \\
& 193.1 \\
13 & 4.6 \\
14 & 3.3 \\
23 & 3.2 \\
24 & 5.7 \\
34 & 1.9
\end{tabular}

Fili in the df column, and determine (roughly) which 2 factor interactions are non-zero:

Note: Conditional \(G^{2}\) statistics are differences of \(G^{2}\) statistics for specific models. For example \(G_{1 / 2 / 3}^{2}-G_{12 / 3}^{2}=G[12]=193.1\)
c. Based on these results, write down the "best" loginear model for thís table in terms of the appropriate U-terms, and, in the context of this example, interpret it.

1134

GMPM
(10) 3. You are interviewing individuals at random in the comunity to determine preferences for home energy consumption.

You āsk each individuā which of the following 4 energy alternatives he/she preférs:

Natural Gas
Oil
Coal
Solar Fower
The 1000 individuals sampled have the following preferences:
非 individuals
\begin{tabular}{|c|c|}
\hline Natural Gas & 270 \\
\hline \(0 i 1\) & 260 \\
\hline Coal & 280 \\
\hline Solar & 190 \\
\hline
\end{tabular}

Test whether individual preferences are unformly distributed among these 4 alternatives.
\[
2135
\]
1. a. Since this answer ís dírected to a layman of both exploratory data analysis and statistics, perhaps the simplest and most effective response would be to say:
"independencémpiles that the variables do not infiuence one another in a consistent measurāble way. ít is not possibie to predict with accuracy the number of children in family based upon their income."

A more technicai response which would assume a background in the subject would be to say that:
"The contríbut \(\overline{\text { In }} \overline{\text { on }} \bar{f}\) one categcry of a factor does not heip define the contribution of any category of the other factor: in other words, the probability of a given ōsérvation falling in particular cell of the tabie ís equaí to the product of the marginal probabilities."

The form \(\overline{\mathrm{c}} \overline{\mathrm{f}}\) the table of raw data can be described by the form:
children
\begin{tabular}{|c|c|c|c|}
\hline & \(\geq 2\) & \(\leq 3\) & \\
\hline \[
<8,000
\] & \[
\frac{\mathrm{a}}{\mathrm{~b}} \mathrm{x}
\] & \(\frac{\mathrm{b}}{\mathrm{a}} \mathrm{y}\) & vhere \(\bar{x}\) nnd \(\bar{y}\) represent values (predictea or \\
\hline \(\geq 8,000\) & ax & by & observed) of the able and \(a\) and \(b\) are positive \\
\hline
\end{tabular}
b. The model of independence in the table is given by
\[
\begin{array}{r}
\text { log } m_{i j}=U+U_{1}+U_{2} \quad \begin{array}{c}
\text { where } m_{1 j} i \bar{s} \text { a predicted celi vaiue } \\
\text { and } U \text { is the grand mean }
\end{array} \\
U_{1} \text { is the additional contribu- } \\
\text { tion to the grand mean } \\
\text { associated with the first }
\end{array}
\]

\section*{\(\$ 136\)}

GMPM
\[
\begin{aligned}
& m_{i j} \text { is also given by the equation } m_{i j}=\frac{x_{i+} x_{+j}}{x_{++}} \\
& \text {where each } x_{i \mp} \text { is a row sum } \\
& \text { each } x_{+j} \text { is a colum sum } \\
& x_{++} \text {is the sum of all ceil values (ail } x_{i j}{ }^{\prime} \bar{s} \text { ) }
\end{aligned}
\]

The solution (given the marginal sums) is:

c. The "null" hypothesis to be tested is that there is no interaction between family income and the number of children (ie. \(\mathrm{U}_{12}=0\) ).
To test this hypothesis we use the \(\mathrm{X}^{2}\) formula:
\[
\bar{x}^{2}=\Sigma \frac{(\text { Observed value }=\text { Expected Value })^{2}}{\text { Expected Value }}
\]

We calculate the expected val es in \(b\) above under the assumption of Independence ( \(1, \mathrm{U}_{12}=0\) ). The observed values are given in this question.
The respective (Obs. - Exp.) \({ }^{2}\) values for tie e table are Exp.
\[
\begin{aligned}
& \begin{array}{|c|c|}
\hline 7.4 ? & 3.18 \\
\hline 9.07 & 3.89 \\
\hline
\end{array} \\
& \overline{23.58}=\Sigma \frac{(O b \bar{s}-\overline{E x p})^{2}}{\overline{E x p} .}=\mathrm{X}^{2} \\
& -137
\end{aligned}
\]

Using \(\alpha=.05\) for a one=tall tēst, we find \(z=1.65\).
Since \(\sqrt{23.58}=4.86>1.65\) the nu11 hypothēis is rejected.
Our conciusion is that an interaction between the variables probably does exist and that our assumption of independence was probably incorrect.
2. a. By comparing the number of degrees of freedom (d.f.) with the \(G^{2}\) value for esch model we can discover which model fits best.

The model of independence \((1 / 2 / 3 / 4)\) is apparentiy much too simple; the \(G^{2}\) is almost four times the number of degrees of freedom.

The model of all two factor interactions displays a \(\mathbf{G}^{2}\) to d.f. ratio of .73 which is closest to 1 of any of the three models. However, as shown by the ratio of less than one, the model is "overfit". A simpler model might be preferred.

The model of three factor interactions te much too complex with a G2/d.f. ratio of about . 52.

The \(12 / 13 / 14 / 23 / 24 / 34\) is therefore the "best-fitting" model of the three given. Partitioning of this model would be advised to get a z mpler model which is not overfit.
b. To calculate the degrees of freedom for each interaction we must consider the number of categorief for each variable
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{Variable} & 1 & has & 4 & categor: & Let \(I=4\) \\
\hline & 2 & " & 3 & " & \(J=3\) \\
\hline & 3 & " & 2 & " & \(\mathrm{K}=2\) \\
\hline & 4 & " & 4 & " & \(L=4\) \\
\hline
\end{tabular}

Since the question asks for the number of degrees of freedom fō each interaction the calculation are stralghtforward mult \(\overline{\mathrm{Ip}} \mathrm{lications} \mathrm{of} \mathrm{the} \mathrm{degrees} \mathrm{of} \mathrm{freedom} \mathrm{of} \mathrm{the} \mathrm{involved}\) variabies. Therefore the result is:

Interaction
12
13
14
23
24
34
\(\mathrm{G}^{2}\)
193.1
4.6
125.3
3.2
5.7
1.9
d. \(\mathrm{F}_{\text {- }}\)
\((\mathrm{I}-1)(\mathrm{J}-1)=6\)
\((I-1)(K-1)=3\)
\((\mathrm{I}=1)(\mathrm{L}-1)=9\)
\((\mathrm{J}-1)(\mathrm{K}-1)=2\)
\((\mathrm{J}=1)(\mathrm{L}-1)=6\)
\((\mathrm{K}-1)(\mathrm{L}-1)=3\)

The queation also asks what two factor interactions are non-zero. The sheer magnitude of the \(G^{2}\) makes \(\overline{\mathrm{I}} \mathrm{t}\) apparent that 12 and 14 are non-zero. They are so overwhelming that inclusion of the others would probably contribute little to the goodness of fit of the model:
c. The best log-linear model is given by:
\[
\log m_{i j k i}=U+U_{1}+U_{2}+U_{3}+U_{4}+U_{12}+U_{14}
\]

Length of stay, age, sex, and preoperative status each contribute in describing particular types of patients and the frequency which they can be expected to be observed. In addicion; there is a relationship (an intēraction) bētween length of stay and age, and between length of stay and preoperative status. Although we do nōt know for sure what these relationships are, we can postulate that perhaps the very young or very old normally require extra care in their treatment and therefore generally stay longer. Similarly, it can be reasoned that the worse the preoperative status of the patient the longer he or she will have to stay in the hospital.

There are no other significant two factor interactions nor are there any three factor relationships which hélp much in describing the patient population.
3. If individual preferences of energy alternatives are uniformiy distributed, each category would have the same number of observations (negiecting sampling error). This means that the expected values for each of the four alternatives is 250 (i.e. \(\frac{10 Q 0}{4}\) ). The null hypothesis is \(H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}\).

With 3 degrees of freedom, at a \(95 \%\) level of significance, a table value of 7.815 is found. Since \(20>7.815\), the null hypothesis is rejected: We cannot assume that the preferences are uniformiy distributed.

\section*{Final Examination Second Term}

\section*{Name :}
\(\qquad\)

All answers should be written on this test. Total point score is 100. You need not answer every question: please read the examination before you begin writing. You have 2.5 hours to complete this examination.

Part I. This section is worth 40 points, Answer all 3 questions (\#1, 2 and 3)
(1.) You are intērēted in constiucting a linear modél rélating the number of phermacists per census tract to ocher policy relevant features of the tract.
a . You expect to use least squares techniques o esstimaté your model: Consequently, you suspect that two problems may arise because of these correlated variasles.
(a) The residuals will not be independent.
(b) Their coefficient estimates will not bè rēliablē.
(c) The F-test will produce a - rlt.
(d) Both coefficient estimate. \(\quad\) ve lärge t-s̄tatistics.
(e) The computer may have probleî. with \(\left(\underline{X^{-}} \underset{\sim}{x}\right)^{-1}\).
(f) The coefficient of determination will be indeterminant.
b. When you téli your supervisor about your intentions to use least squares to estimate the model she as s what this means. Your reply is that it uses one specific mi:imization criterion which is: minimize .....
(a) \(\bar{\Sigma}\left(\mathbf{Y}_{i}-\hat{\mathbf{Y}}_{i}\right)\)
(b) \(\quad \Sigma\left|Y_{i}-\hat{X}_{i}\right|\)
(c) \(\Sigma\left(Y_{i}-\hat{\bar{Y}}_{i}\right)^{2}\)
(d) \(\Sigma\left(Y_{i}^{2}-\hat{Y}_{i}^{2}\right)\)
(e) None of the above.
c.. You coritinue your explanation by saying that; "If the assumptions nincrlying leās. squarē hold, then this procedure yields optimai entimates of the coefficients". What are the assumptions?
d. "But in what sense aie least squares regression lines optimal?" she asks. You reply...
e. "Ok", your colleādee saȳ, "so they are optimal when the ascumptions hold. But suppose for our data the assumptions do not hold. Whet does this imply ulth regards to the dism tributions of the standard set of test statistics that we always compute?
\[
31.11
\]
2. a. Your supervisor states that \(5 \%\) of the census tractis in Pittsburgh have median family size greater than 6 individuals/ family. In disbelief, you gather data on the 86 census tracts亏̄nd find that median family size per tract is remarkably well behaved; with \(\mu=4.5\) and \(\sigma^{2}=.20\). Is your supervisor correct? Why or why not?
b. The computer center at Robber Baron University claims a \(95 \%\) availability for their HAL -250 computer. You are somewhat skeptical of this statement, so you gather data for the 30 days that you used the system for your latest paper. You calculate the average availability to be \(85 \%\) with associated standard deviation \(\underset{\sqrt{n}}{5}\) of \(5 \%\).
(i) Construct a \(95 \%\) confidence \(\ddagger\) neerval Eor the true percentage.
\[
1142
\]

QMPM
(ii) Based on this interval, state and test a hypothesis ( \(\alpha=.05\) ) to determine the truth of the computer center's assertion.
(iii) Are the distributional assumptions that you made to test the hypothesis in (ii) appropriate? Why or why not?
31.3
3. You are interested in studying what fatient characteristics influence the length of \(-7 y\) of hospital patients after surgical procedures hat performed on them.

You have data on 10000 nigical patients from Massachusetts General Hospital in 1976.

The patients are placed into cells of a 4 dimensional contingency table with variables:

Var. 1: Length of Stay; 4 categories:
\(\leq 1\) day; 1 day - 1 week;
1 week - 1 month; \(>1\) month.
Var: 2: Age; 3 categories:
\(\leq 30\) years; \(30-50\) years, \(>50\) years
Var: 3: Sex; 2 categories:
Male, Female
Var. 4: Preoperative status; 4 categorirs: \(1=\) excellent; \(2=\) good; \(3=\) fair; \(4=\) poor

You use the stepwise procedure to fit loglinear models to this \(4 \times 3 \times 2 \%\) table.

The first stage of the firtino process yields the following results:
\begin{tabular}{|c|c|c|}
\hline Mode1 & df & \(\mathrm{G}^{2}\) \\
\hline 1/2/3/4 & 86 & 375.4 \\
\hline 12/13/14/23/24/34 & 57 & 41.6 \\
\hline 123'124/134/234 & 18 & 9.3 \\
\hline
\end{tabular}
a. What can you conclude from these results with regards to choosing the "best-fitting' log linear model?

\section*{1144}
b. You find the following test statistics for each of the 2 factor interactions:
\begin{tabular}{cc} 
Interaction & Conditionā \(\bar{G}^{2}\) \\
\hline 12 & 193.1 \\
13 & 4.6 \\
14 & 125.3 \\
23 & 3.2 \\
24 & 5.7 \\
34 & 1.9
\end{tabular}

Fill in the de column, and determine (roughly) which 2 factor interactions are non-zero:
Note: Conditional \(G^{2}\) statistics are differences of \(G^{2}\) sfatistics for specific models. For example \(G_{1 / 2 / 3}^{2}-G_{12 / 3}=G_{[12]}^{2}=193.1\)
c. Based on these resuits; write down the "best" loginear model for this table in terms of the appropriate U-terms, and, in the context of chis example, interpret it.

2115

Yart in. This section is worth 40 points. Answer \(\overline{5}\) of the 7 questions.
1. if s, nane \(^{\text {agked }}\) you to describe how exploratory and nunfirmatory techninues differed and what they were used for, how would you respond?
2. What feature distinguishes a table on which you would perform a twoway analysis from a table to which you would fit a iog-il, sar model?

\section*{1146}

QMPM
3. What does an extended fit incorporate that a simple two way analysis does not?

Choose one:
(a) additive differences
(b) multiplicative effects
(c) colum medians of zero
(d) a \(\mathrm{U}_{\mathbf{1 2}(\mathrm{ij})}\) interaction term
4. Suppose that a sample of voters in a certain district were selected by choosing every hundredth person from the list of registered voters and including that person and fisher spouse in the sample. Would this \(\bar{s} \bar{e}\) a random sample? Why \(\bar{o} \bar{r}\) why not?
5. After performing 4 haif-steps of median polish; your two -way
 values in the upper left and lower right corners and large neg= five values in the upper right and lower left corners. You should:

Choose one:
(a) Go to an extended fit
(b) Perform more half-steps of median polish
(c) Return to the original data and perform mean polish
(d) Perform on \(x^{2}\) test with the observed and expected frequencies
\[
31.17
\]
6. What does a \(95 \%\) confidence interval about pean?
7. What is the definition of the expectation of continuous random vāriābē if \(f(\bar{x})\) is its probability density function?

\section*{1148}

Paxt III
The following questions are worth 20 points. All refer to chapters in in the book hy Fairley and Mostelier. There are 10 questions each kith five possible answers. írcie the one best answer. If you haven't done the readings and you guess at the answers how many points would you gain on average?

The following questions refer to Fairiey's paper, "Accidents on Route 2 ".
1. In his initual expioration of the data on accidents Fairiy used a stem-and-leaf display and concluded that:
a. quarteriy totais óf accidents couid not be predicted accurately by simply using an average value.
b. the count of accidents by quarter should be transformed by taking its iog and then predictions would be straightforward
c. the data were remarkabiy symetric
d. míssing values precluded any classical analysis
e: : a regression using least squares estimation would yield unacceptably low t-statistics for the time variables
2. When exploring year and quarter effects simultaneously Fairley tried an additive model and the following. procedure to fit it:
a. Log-linear contingency tāle analysis
Б. Linear regression
c. Median polish
d. Extended fit
e. None of the above
3. Hé also tried a multiplicative model: This invoived
a. testing for interactions
- \(\bar{b}\). mítiplying marginals
c. adaing an extended fit
d. multiplying by the conditional typical
e. none of the above

The following questions refer to the chapter "A Statistical Search for Unusually Effective Schools' by Kiltgaard and Hall.
4. They used regression primarily as
a. a confirmatory procedure
b. an expioratory procedure
c. an inferentaal precedure
d. an experimental procedure
e. an effective procedure
5. The poilcy impícation that they derived from their study was:
a. We need to build more éffective schools
b. Unusually effective schools cannot be producé
c. Studies of educationai éffectiveness should focus on ciassrooms and programs
d. Studies of educational effectiveness are doomé to failure because of colinearity problems
e. Rural schools are more effective then urban schools.

\section*{1150}

The following question refers to the chapter by Shepard on "The Wait to See the Doctor".
6. Using a two-way analysis he concluded that;
a. Doctor workload was significant at the \(5 \%\) level
 in near model
c. Late startup was a more important factor than doctor workload
d: Doctor workload was a more important factor than late startup
e. Race of doctor interacted with race of patient

The following questions refer to the chapter by Lave and Siskin, "Does Air Pollution Shorten Elves?"
7. This chapter
a. proves that afr pollution shortens life
b. shows that nothing can be proven using regression
c. proves that exploratory data analytic procedures are superior to confirmatory procedures
d. could be improved by extended study of the sensitivity of the result es to the assumptions of least squares
e. could be improved by an extended study of the sensitivity of the elasticities to the transformations performed
8. Another 䛔pícation they draw is:
a. in modern American, reducing air pollution is the only way to lengthen life expectancy
b. the elasticity of poverty indicates that a reduction in poverty will result from a reduction in air pollution
c. regression procedures should not be used to estimate models for large SMSAB.
d. the most useful decision variable is the minimum level of a pollutant
e. the most useful decision variable is the maximum level of a pollutant
\[
\{151
\]

The next questions refer to the chapter by Gilbert, Light and Mosteller, "Assessing Social Innovations".
9. They distinguish between the following types of field trials:
a. Expensive and inexpensive
b. Purposeful and integrative
c. Continuous and discrete
d. Survey based and experimental
e. Randomized and nonrandomized
10. This chapter described the application of which procedure in a policy context:
a. Exploratory analysis
b. Hypothesis testing
c. Experimental meteorology
d: Normal deviates
e. Ridge regression

\section*{Final Examination, Second Term Solutions}

\section*{Pärt 1.}
1) a. parts b. and e.
b. part \(\bar{c}\).
c. Assumptions are
1. The model is correct, i.e., y is a inear function of the \(x^{\prime} \mathrm{s}\).
it. Residuals are independent
iti: Residuals are homoscedastic
iv: Residuals are - Gaussian ( \(\overline{0}, \sigma^{2}\) )
d: of all linear unbiased estimates, the least squars regression inne ylelds residuals with minimum variance. The ine is "optimal" in this sense only if the four assumptions are true.
e: I: If the model is not correct, the regression coefficients do not estimate the true population values: The coefficient estimates will be biased, although still normaliy distributē.
ii. If the residūā̄ are not independent, then one must consider the covariances of \(\bar{y}_{f}\) and \(y_{j}\) when calculating sample distributions. The sime of gquares will be \(x^{2}\), or mixtures of \(x^{2}\), but the degrees of freedom are indeterminate. This fact influences the distribution of \(t\) statistics; \(R^{2}\), and the F statistic.
iii. If the errora are heteroscedastic; then the residuals are not identically distributed. The sums of squares will be \(\bar{m}\) xtures of \(\bar{x}^{2}\) with varying degrees of freedom: The regression coefficient ēstimatē will be linear combinations of Gaussian random variables. We will not know the linear combinations or mixtures unless we know the variance structure of the errors.
iv. Invalidation of the assumption of Gaussianity ts the most severe. None of the null hypothesized distributions will obtain; moreover, it may be quite difficult to compute the true distributions.
\[
\$ 153
\]
2) a. Median Family size ~Gau (4.5, .20)
\[
\begin{aligned}
& \overline{\mathrm{Z}}=\frac{\text { median family Bize }-4.5}{\sqrt{.20}} \sim \text { Gau }(0,1) \\
& \text { Pr \{median fatuily size >6\} }= \\
& \operatorname{Pr}\left\{\frac{\text { median family } 8 \dot{\text { fa }}-4.5}{\sqrt{.20}}>\frac{\overline{6}=\frac{4.5}{\sqrt{20}}}{\sqrt{.20}}=\right. \\
& P\{2>3.33\}<.001
\end{aligned}
\]

Our supervisor, who claims that
\(P\{\) median family size \(>6\}=.05\) is incorrect
b. i. With a large aumber of observations; a \(95 \%\) confidence interval \(1 \overline{8}\)
\[
\begin{aligned}
& p \pm \bar{Z}\left(\frac{s}{\sqrt{n}}\right)= \\
& .85 \pm 1.96(.05)= \\
& (.752, .948)
\end{aligned}
\]
ii. \(\bar{H}_{0}: \quad \bar{P}=. \overline{95}\)
\(\bar{H}_{1}: \overline{\mathrm{P}} \neq .95\)
Since our confídence interval that we constructed in part 1; (.752; .948); does not contain .95; we reject \(\mathrm{H}_{0}^{-}\). We do not agree with the computer center:
iii. We have reiied on the assumpion that our data are approximately Gaussian: However; the true distribution 1s quite skewed with guch a large \(P\). In 1ight of this skewness; a sample size of 30 is not large enough to justify our assumption.

\footnotetext{
1154
}
3) \(\bar{a}\). The "best-fitting" log-innear model wili have several two factor interactions; but should not have any three factor interactions.
b. Interaction df
\begin{tabular}{lll}
12 & 6 & nonzero \\
13 & 3 & \\
14 & 9 & nonzero \\
23 & 2 & \\
24 & 6 & \\
34 & 3 &
\end{tabular}
c. Model:
\[
\bar{l}_{i j k \ell}=\mathrm{U}+\bar{U}_{1(i)} \mp \bar{U}_{2(j)} \mp \mathrm{U}_{3(k)}+\mathrm{U}_{\overline{4}(\ell)}+\mathrm{U}_{12(\overline{1})}+\mathrm{U}_{14(i \ell)}
\]

Conditional on \(\bar{a}\) patíent's length of \(\bar{s} t \bar{a} \bar{y} ;\) his or her age and preoperative status ere independent.
\[
\$ 155
\]

\section*{Part II.}
1. Confirmatory techniques make distributional assumptions about the data: Based on these assumptions; inferences are made concerning the probabilities of various outcomes; and most likely parameter values: Of course, if the distributions are not accurate, then the inferences are invalid.

Exploratory techńques do not make a priori assumptions about the data: Instead, they examine the relationships among the data and attempt to "describe" the data based on these relationships.

Thus, even if distributional assumptions are not true, exploratory techniques may stili be able to describe, sumarize, and fit models to data.

2: The feature that distinguishes these tables is the nature of the cell entries: A two-way tabie has cell entries that are values of a third variabie, a response variable. We in fact use the row and column variables to "explain" this response variable. In à contingency table, ceil ( \(\bar{i}, \bar{j}\) ) is merely a count of the number of occurences of category \(\bar{i}\) of variabie \(\bar{A}_{1}^{-}\)and category \(f\) of Variable \(A_{2}\).
3. Part \(\bar{b}\)
4. This procedure does not yield a representative sample. The starting point in the inst must be randomly chosen. A better procedure would be to use a table of random numbers to choose all Individuais. Of course, spouses are not selected randomiy; a spouse has à probability of uity of being in the sample if his/her spouse is inciuded.
5. Part a.
6. A \(95 \%\) confidence interval about \(\rho\) implies that if we obtained N samples and estmated \(\rho\) in each sample, and construct a \(95 \%\) confidence interval about each \(\hat{p}\), \(95 \%\) of the intervals wili contain the true \(\rho\) :
7. \(\int x f(x) \mathrm{dx}\)

QMPM

Part III.
1. Part \(\overline{\mathbf{a}}\)
2. Part \(\bar{e}\)
3. Part b
4. Pāt b
5. Part cor e
6. Pāit c
7. Part d
8. Pāt d
9. Pärt e
10. Part b
\[
\$ 157
\]```


[^0]:    
    事
    Reproductions supplied by EDRS āre the best that car be made

[^1]:    Hefers to numbers in parentheses on righthand side of zecure outifne.
    

